Math 217 – Midterm Spring 2014

Time: 120 mins.

- 1. Answer each question in the space provided.
- 2. Clearly explain and justify your reasoning at each step.
- 3. No calculators, notes, or other outside assistance allowed.

Name:	Section:
1101110.	50001011:

Question	Points	Score
1	10	
2	15	
3	12	
4	18	
5	11	
6	12	
7	12	
8	10	
Total:	100	

- 1. Write complete, precise definitions for each of the following (italicized) terms.
 - (a) (2 points) The *image* of an $n \times m$ matrix A.

(b) (2 points) V is a subspace of \mathbb{R}^n .

(c) (2 points) A linear relation between vectors $\mathbf{v}_1, \dots, \mathbf{v}_m \in \mathbb{R}^n$.

(d) (2 points) A basis of a subspace V of \mathbb{R}^n .

(e) (2 points) The dimension of a subspace V of \mathbb{R}^n .

- 2. State whether each statement is True or False and justify your answer.
 - (a) (3 points) There exists a 3 x 4 matrix A of rank 3 such that $A \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \mathbf{0}$.

(b) (3 points) If A and B are 3×2 matrices of rank 2, then rref(A) = rref(B).

(c) (3 points) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent vectors in \mathbb{R}^n , then all three vectors must be parallel to each other.

(d) (3 points) There exists a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\operatorname{im}(T)$ is a plane and $\ker(T)$ is a plane.

(e) (3 points) If $A \in \mathbb{R}^{n \times n}$ and rank(A) = n, then $A = I_n$.

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that

$$T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $T \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$.

(a) (6 points) Can you tell for certain what $T\begin{bmatrix} 3\\4\\0 \end{bmatrix}$ is? If yes, find it. If not, why not?

(b) (6 points) Can you tell for certain what $T\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is? If yes, find it. If not, why not?

4. Let

$$A = \begin{bmatrix} 4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}.$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\mathbf{x}) = A\mathbf{x}$.

(a) (8 points) Show that $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is a basis of \mathbb{R}^3 .

(b) (10 points) Find $[T]_{\mathcal{B}}$, the \mathcal{B} -matrix for T.

5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection onto the vector $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$.

If you should need the formula, $T(\mathbf{x}) = \left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$ for all $\mathbf{x} \in \mathbb{R}^3$. It is possible to solve this problem without finding the matrix for T.

(a) (4 points) Find a basis for im(T).

(b) (7 points) Find a basis for ker(T).

6. (12 points) Consider P_2 , the linear space of all polynomials of degree ≤ 2 , and a subspace V of P_2 defined as

$$V = \left\{ f \in P_2 : \int_{0}^{1} f(t) \, dt = 0 \right\}.$$

Find a basis for V. What is the dimension of V?

7. (a) (6 points) Let $A \in \mathbb{R}^{n \times n}$ such that $A^2 = 0$. Prove that $\operatorname{im}(A) \subseteq \ker(A)$.

(b) (6 points) Let $A \in \mathbb{R}^{2\times 2}$ such that $A^2 = 0$ but $A \neq 0$. Prove that $\operatorname{im}(A) = \ker(A)$. Hint: Use part (a).

8. (10 points) Let $A, B \in \mathbb{R}^{n \times m}$.

Prove that $\operatorname{im}(A) \subseteq \operatorname{im}(B)$ if and only if there exists $C \in \mathbb{R}^{m \times m}$ such that A = BC.