Math 217 – Final Exam Winter 2014

Time: 120 mins.

- 1. Answer each question in the space provided.
- 2. Use only the paper provided with this exam.
- 3. Remember to show all your work.
- 4. No calculators, notes, or other outside assistance allowed.

Name:	Section:

Question	Points	Score
1	8	
2	15	
3	14	
4	14	
5	12	
6	15	
7	12	
8	10	
Total:	100	

- 1. Write complete, precise definitions for each of the following (italicized) terms.
 - (a) (2 points) An eigenvector of an $n \times n$ matrix A.

(b) (2 points) The kernel of an $n \times m$ matrix A.

(c) (2 points) The dimension of a subspace V of \mathbb{R}^n .

(d) (2 points) The geometric multiplicity of an eigenvalue λ of an $n \times n$ matrix A.

- 2. State whether each statement is True or False and justify your answer(e.g., by giving a short proof or counterexample).
 - (a) (3 points) Every diagonalizable $n \times n$ matrix is invertible.

(b) (3 points) The matrix A of an orthogonal projection onto any subspace V of \mathbb{R}^n is diagonalizable.

(c) (3 points) If $A, B \in \mathbb{R}^{2\times 2}$ have the same trace and the same determinant as each other, then A and B have the same eigenvalues.

(d) (3 points) If $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$, then $\det(AB) = \det(BA)$.

(e) (3 points) Any $n \times n$ matrix with rank n is similar to I_n .

3. Let

$$A = \begin{bmatrix} 2 & 1 & 1 & -2 \\ 1 & 2 & 1 & -2 \\ 1 & 1 & 2 & -2 \\ 1 & 1 & 1 & -1 \end{bmatrix}.$$

(a) (7 points) 1 is an eigenvalue of A. Find a basis of the eigenspace E_1 .

(b) (7 points) Diagonalize A.

- 4. Let $\mathbf{v}_1 = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} b \\ c \\ c \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$, where a, b, c, d, e and f are all positive real constants.
 - (a) (4 points) What restrictions, if any, must be placed on a-f for these vectors to form a basis for \mathbb{R}^3 ?

(b) (6 points) For your choice of values from (a), find an orthonormal basis \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 for \mathbb{R}^3 derived from \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

(c) (4 points) Find the QR factorization of $M = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$.

- 5. Prove the following statements.
 - (a) (6 points) If $A \in \mathbb{R}^{n \times n}$ is symmetric and $\mathbf{v} \in \text{im}(A)$, $\mathbf{w} \in \text{ker}(A)$, then \mathbf{v} is orthogonal to \mathbf{w} .

(b) (6 points) If k is a positive odd integer and $B \in \mathbb{R}^{n \times n}$ is a symmetric matrix, then there exists a symmetric matrix $C \in \mathbb{R}^{n \times n}$ such that $B = C^k$.

- 6. Consider the linear transformation $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ such that $T(A) = A A^T$.
 - (a) (5 points) Find a basis for ker(T). Describe this subspace.

(b) (5 points) Find a basis for im(T). Describe this subspace.

(c) (5 points) Prove that T is diagonalizable. Find an eigenbasis \mathcal{B} for T and find the \mathcal{B} -matrix $[T]_{\mathcal{B}}$.

- 7. Let $A = \begin{bmatrix} 2 & b \\ -1 & 0 \end{bmatrix}$.
 - (a) (6 points) For what values of b is A diagonalizable over \mathbb{R} ? Over \mathbb{C} ? For what values of b is A not diagonalizable over \mathbb{R} or \mathbb{C} ?

(b) (6 points) If b = 5, find a rotation-scaling matrix B similar to A, and the similarity matrix S. What are the scaling factor and rotation angle of B?

8. (10 points) Prove that if V and W are subspaces of \mathbb{R}^n such that $V \cap W = \{\mathbf{0}\}$, then $\dim(V) + \dim(W) \leq n$.