Math 217 – Midterm 1 Winter 2014

Time: 120 mins.

- 1. Answer each question in the space provided.
- 2. If you run out of space for an answer, continue on the back of the page.
- 3. Remember to show all your work.
- $4.\,$ No calculators, notes, or other outside assistance allowed.

Name:	Section:

Question	Points	Score
1	8	
2	15	
3	20	
4	15	
5	10	
6	18	
7	6	
8	8	
Total:	100	

- 1. Write complete, precise definitions for each of the following (italicized) terms.
 - (a) (2 points) An invertible function $f: X \to Y$.

(b) (2 points) The kernel of an $n \times m$ matrix.

(c) (2 points) The span of vectors $\mathbf{v}_1, \dots, \mathbf{v}_m \in \mathbb{R}^n$.

(d) (2 points) A basis of a linear subspace V of \mathbb{R}^n .

- 2. State whether each statement is True or False and justify your answer.
 - (a) (3 points) If rref(A) = rref(B), then im(A) = im(B).

(b) (3 points) If V and W are linear subspaces of \mathbb{R}^n , then $V \cup W$ is also a linear subspace of \mathbb{R}^n .

(c) (3 points) If A and B are $n \times n$ matrices such that $\ker(A) = \{0\}$ and $\ker(B) = \{0\}$, then $\ker(AB) = \{0\}$.

(d) (3 points) There exists an invertible $n \times n$ matrix with exactly n-1 non-zero entries.

(e) (3 points) If A and B are $n \times n$ matrices such that AB = B, then A = I.

3. Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be a linear transformation with the standard matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

(a) (8 points) Find a basis for ker(T).

(b) (3 points) Find a basis for im(T).

- (c) (3 points) What is rank(A)? How is rank(A) related to dim(ker(A))?
- (d) (3 points) Is T one-to-one? Justify your answer.
- (e) (3 points) Is T onto? Justify your answer.

- 4. Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation by 60° counterclockwise. Let $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the reflection about the line y = x.
 - (a) (9 points) Find the standard matrix of the linear transformation $T \circ S$.

(b) (6 points) Find the standard matrix of the linear transformation T^9 .

5. (10 points) Let V and W be linear subspaces of \mathbb{R}^n . Define

$$V+W=\{\mathbf{v}+\mathbf{w}:\mathbf{v}\in V,\mathbf{w}\in W\}.$$

Prove that V + W is a linear subspace of \mathbb{R}^n .

6.

$$A = \begin{bmatrix} 0 & 0 & 2 \\ 2 & -1 & -1 \\ -2 & 1 & 3 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\mathbf{x}) = A\mathbf{x}$. $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is a basis of \mathbb{R}^3 .

(a) (12 points) Find $B = [T]_{\mathcal{B}}$.

(b) (6 points) Prove that $[T^2]_{\mathcal{B}} = B^2$.

7. (6 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the invertible linear transformation such that

$$T\left(\begin{bmatrix}1\\-1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\0\end{bmatrix}, \ T\left(\begin{bmatrix}1\\0\\-1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\0\end{bmatrix}, \ T\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\\1\end{bmatrix}.$$

Find the standard matrix for T^{-1} .

8. (8 points) Prove that if A and B are $n \times n$ matrices and AB is invertible, then A and B are invertible.