Math 217 – Midterm 2 Winter 2014

Time: 120 mins.

- 1. Answer each question in the space provided.
- 2. Remember to show all your work.
- 3. No calculators, notes, or other outside assistance allowed.

Name:	Section
Name	Section:

Question	Points	Score
1	8	
2	15	
3	18	
4	12	
5	12	
6	18	
7	8	
8	9	
Total:	100	

- 1. Write complete, precise definitions for each of the following (italicized) terms.
 - (a) (2 points) An orthogonal transformation $T: \mathbb{R}^n \to \mathbb{R}^n$.

(b) (2 points) The orthogonal complement of a linear subspace V of \mathbb{R}^n .

(c) (2 points) An isomorphism from V to W, where V and W are arbitrary linear spaces.

(d) (2 points) The trace of an $n \times n$ matrix A.

- 2. State whether each statement is True or False and justify your answer.
 - (a) (3 points) If V is a linear subspace of \mathbb{R}^n with basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, then for every $\mathbf{v} \in \mathbb{R}^n$, $\text{proj}_V(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_1 + \dots + (\mathbf{v} \cdot \mathbf{v}_m)\mathbf{v}_m$.

(b) (3 points) If an $n \times n$ matrix B may be obtained from another $n \times n$ matrix A by a series of elementary row operations, then $|\det(B)| = |\det(A)|$.

(c) (3 points) The rows of an orthogonal matrix need not be orthonormal.

(d) (3 points) The linear space $H = \{c_1e^t + c_2e^{-t} : c_1, c_2 \in \mathbb{R}\}$ is isomorphic to P_1 , the linear space of all polynomials of degree ≤ 1 .

(e) (3 points) If an $n \times n$ matrix A has linearly independent columns, then $\det(A^T A) > 0$.

3. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}; \ \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}; \ \mathbf{v}_3 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$$

 \mathcal{B} = $\{\bar{v}_1,\bar{v}_2,\bar{v}_3\}$ is a basis for a subspace V of $\mathbb{R}^4.$

(a) (5 points)
$$\mathbf{v} = \begin{bmatrix} -3\\1\\-2\\4 \end{bmatrix} \in V$$
. Find the \mathcal{B} -coordinates of \mathbf{v} .

(b) (5 points)
$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \\ 2 \\ 3 \end{bmatrix} \notin V$$
. Find $\operatorname{proj}_V(\mathbf{w})$.

(c) (8 points) Find an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ of \mathbb{R}^4 such that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal basis of V.

- 4. Let $V = \operatorname{span}(\sin t, \cos t, e^t)$ and let $T: V \to V$ be the linear transformation defined by T(f) = f'.
 - (a) (6 points) Let $W = \{ f \in V : T(f) = f \}$. Find dim(W).

(b) (6 points) Find the \mathcal{B} -matrix of T, where $\mathcal{B} = (\sin t, \cos t, e^t)$.

5. (12 points) Let $\langle -, - \rangle$ be an inner product on a linear space V and $k \in \mathbb{R}$. Consider the function $\langle -, - \rangle : V \times V \to \mathbb{R}$ defined by

$$\langle \langle f, g \rangle \rangle = k \langle f, g \rangle.$$

Prove that $\langle\!\langle -,-\rangle\!\rangle$ is an inner product on V if and only if k>0.

6. Let A be a 4×4 matrix

$$A = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{x} \\ | & | & | & | \end{bmatrix},$$

where $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are fixed vectors in \mathbb{R}^4 and \mathbf{x} is any vector in \mathbb{R}^4 .

Let $T: \mathbb{R}^4 \to \mathbb{R}$ be the linear transformation defined as $T(\mathbf{x}) = \det(A)$.

Suppose $T(\mathbf{e}_1) = 4$, $T(\mathbf{e}_2) = 1$, $T(\mathbf{e}_3) = -1$ and $T(\mathbf{e}_4) = 2$. Explain your answers for each of the following.

(a) (3 points) What is
$$T \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
?

(b) (6 points) If
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} - & \mathbf{x}^T & - \\ - & 2\mathbf{v}_1^T & - \\ - & 4\mathbf{v}_2^T & - \\ - & 6\mathbf{v}_3^T & - \end{bmatrix}$, what is $\det(B)$?

(c) (3 points) If A is not invertible when $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ a \\ b \end{bmatrix}$, how are a and b related?

(d) (6 points) Let $S_n(\mathbf{x}) = \det(A^n)$. Is $S_8(\mathbf{x})$ ever negative? Is there a vector \mathbf{x} such that $S_5(\mathbf{x}) = 0$?

7. (8 points) Show that T(p) = p(0) is a linear transformation from P_1 to \mathbb{R} and find a basis for its kernel. What is rank(T)?

8. (9 points) Let V be a finite dimensional linear space with $\dim(V) = n$, and let $S, T : V \to \mathbb{R}$ be linear transformations such that $\ker(T) \subseteq \ker(S)$. What are the possible values of $\operatorname{rank}(T)$? Prove that S = kT for some $k \in \mathbb{R}$.