Math 217 – Midterm 2 Winter 2014 Solutions

Name:	Section:
11001101	500010H:

Question	Points	Score
1	8	
2	15	
3	18	
4	12	
5	12	
6	18	
7	8	
8	9	
Total:	100	

Math 217

- 1. Write complete, precise definitions for each of the following (italicized) terms.
 - (a) (2 points) An orthogonal transformation $T: \mathbb{R}^n \to \mathbb{R}^n$. **Solution:** An orthogonal transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation that preserves length.
 - (b) (2 points) The orthogonal complement of a linear subspace V of \mathbb{R}^n . **Solution:** The orthogonal complement of a linear subspace V of \mathbb{R}^n is $V^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \}$ $\mathbb{R}^n : \mathbf{x} \cdot \mathbf{v} = 0, \, \forall \mathbf{v} \in V \}.$
 - (c) (2 points) An isomorphism from V to W, where V and W are arbitrary linear spaces.
 - **Solution:** An isomorphism from the linear space V to the linear space W is an invertible linear transformation $T: V \to W$.
 - (d) (2 points) The trace of an $n \times n$ matrix A. **Solution:** The trace of an $n \times n$ matrix A is the sum of the diagonal elements of A.

- 2. State whether each statement is True or False and justify your answer.
 - (a) (3 points) If V is a linear subspace of \mathbb{R}^n with basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, then for every $\mathbf{v} \in \mathbb{R}^n$, $\operatorname{proj}_V(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_1 + \dots + (\mathbf{v} \cdot \mathbf{v}_m)\mathbf{v}_m$.

Solution: False. This is true if the \mathbf{v}_j are orthonormal. For example, in \mathbb{R}^2 consider the projection onto the subspace V spanned by $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. An orthonormal

basis is $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so if we project a vector $\mathbf{w} = \begin{bmatrix} a \\ b \end{bmatrix}$ onto V we have $\operatorname{proj}_V \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{u} = \begin{bmatrix} a \\ 0 \end{bmatrix}$, while $(\mathbf{v} \cdot \mathbf{w})\mathbf{v} = \begin{bmatrix} 4a \\ 0 \end{bmatrix}$.

(b) (3 points) If an $n \times n$ matrix B may be obtained from another $n \times n$ matrix A by a series of elementary row operations, then $|\det(B)| = |\det(A)|$.

Solution: False. If we multiply a row of A by a constant k, then $|\det(B)| = |k \det(A)|$.

- (c) (3 points) The rows of an orthogonal matrix need not be orthonormal. **Solution:** False. The columns of an orthonormal matrix A are orthonormal, and $A^T = A^{-1}$ which is also orthonormal. Columns of A^T , which are rows of A, must therefore be orthonormal.
- (d) (3 points) The linear space $H = \{c_1e^t + c_2e^{-t} : c_1, c_2 \in \mathbb{R}\}$ is isomorphic to P_1 , the linear space of all polynomials of degree ≤ 1 .

Solution: True. We have $\dim(H) = \dim(P_1) = 2$, so they are isomorphic.

(e) (3 points) If an $n \times n$ matrix A has linearly independent columns, then $\det(A^T A) > 0$. **Solution :** True. We have $\det(A^T A) = \det(A^T) \det(A) = \det(A)^2 \ge 0$. Because the columns of A are linearly independent, we know that it is invertible and thus $\det(A) \ne 0$. 3. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}; \ \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}; \ \mathbf{v}_3 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$$

 $\mathcal{B} = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ is a basis for a subspace V of \mathbb{R}^4 .

(a) (5 points) $\mathbf{v} = \begin{bmatrix} -3\\1\\-2\\4 \end{bmatrix} \in V$. Find the \mathcal{B} -coordinates of \mathbf{v} .

Solution : The \mathcal{B} -matrix of \mathbf{v} is the vector in \mathbb{R}^3 whose entries are the coefficients in the unique linear combination $\mathbf{v} = x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3$. We find these coefficients by row-reducing the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 1 & | & -3 \\ 1 & -1 & -1 & | & 1 \\ -1 & 1 & -1 & | & -2 \\ -1 & -1 & 1 & | & 4 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 1 & | & -3 \\ 0 & -2 & -2 & | & 4 \\ 0 & 2 & 0 & | & -5 \\ 0 & 0 & 2 & | & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 1 & | & -3 \\ 0 & -2 & -2 & | & 4 \\ 0 & 0 & -2 & | & -1 \\ 0 & 0 & 2 & | & 1 \end{pmatrix}$$

$$\mapsto \begin{pmatrix}
1 & 1 & 1 & | & -3 \\
0 & -2 & -2 & | & 4 \\
0 & 0 & 2 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\mapsto \begin{pmatrix}
1 & 1 & 1 & | & -3 \\
0 & 1 & 1 & | & -2 \\
0 & 0 & 1 & | & \frac{1}{2} \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\mapsto \begin{pmatrix}
1 & 0 & 0 & | & -1 \\
0 & 1 & 0 & | & -\frac{5}{2} \\
0 & 0 & 1 & | & \frac{1}{2} \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Thus

$$[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} -1 \\ -\frac{5}{2} \\ \frac{1}{2} \end{pmatrix}$$

(b) (5 points) $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \\ 2 \\ 3 \end{bmatrix} \notin V$. Find $\operatorname{proj}_V(\mathbf{w})$.

Solution: Since V is 3-dimensional, the formula for the projection will be is $\operatorname{proj}_V(\mathbf{w}) = (\mathbf{w} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{w} \cdot \mathbf{u}_2)\mathbf{u}_2 + (\mathbf{w} \cdot \mathbf{u}_3)\mathbf{u}_3$, where $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an *orthonormal* basis of V. The elements in the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are mutually orthogonal, but are not unit vectors. Thus we need to normalize each of these vectors in order to obtain an orthonormal basis: $\mathbf{u}_1 = \frac{1}{2}\mathbf{v}_1$, $\mathbf{u}_2 = \frac{1}{2}\mathbf{v}_2$, and $\mathbf{u}_3 = \frac{1}{2}\mathbf{v}_3$. Thus

$$\operatorname{proj}_{V}(\mathbf{w}) = \frac{1}{4} ((\mathbf{w} \cdot \mathbf{v}_{1})\mathbf{v}_{1} + (\mathbf{w} \cdot \mathbf{v}_{2})\mathbf{v}_{2} + (\mathbf{w} \cdot \mathbf{v}_{3})\mathbf{v}_{3})$$

$$= \frac{1}{4} \left(-6 \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix} + 2 \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} + 4 \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \right) = \frac{1}{4} \begin{bmatrix} 0\\-12\\-4\\8 \end{bmatrix} = \begin{bmatrix} 0\\-3\\-1\\2 \end{bmatrix}$$

(c) (8 points) Find an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ of \mathbb{R}^4 such that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal basis of V.

Solution: Note first that since the vectors in the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are mutually orthogonal, their normalizations each $\mathbf{u}_1 = \frac{1}{2}\mathbf{v}_1$, $\mathbf{u}_2 = \frac{1}{2}\mathbf{v}_2$, and $\mathbf{u}_3 = \frac{1}{2}\mathbf{v}_3$ form an orthonormal basis of V. To find \mathbf{u}_4 , it suffices to find a vector \mathbf{v}_4 orthogonal to \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , and then normalize \mathbf{v}_4 . Since \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are so simple, it is not difficult to find \mathbf{v}_4 be inspection:

$$\mathbf{v}_4 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \quad \text{and thus} \quad \mathbf{u}_4 = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

- 4. Let $V = \operatorname{span}(\sin t, \cos t, e^t)$ and let $T: V \to V$ be the linear transformation defined by T(f) = f'.
 - (a) (6 points) Let $W = \{ f \in V : T(f) = f \}$. Find dim(W).

Solution : $f \in V$ implies $f = a \sin t + b \cos t + ce^t$ for some $a, b, c \in \mathbb{R}$. Then $T(f) = a \cos t - b \sin t + ce^t$.

If $f \in W$ then $a \sin t + b \cos t + ce^t = a \cos t - b \sin t + ce^t$, that is, $(a+b) \sin t + (b-a) \cos t = 0$. Since $\sin t$, $\cos t$ are linearly independent functions in V, a+b=0 and b=a. Then a=0 and b=0, $W=\mathrm{span}(e^t)$ and $\dim(W)=1$.

(b) (6 points) Find the \mathcal{B} -matrix of T, where $\mathcal{B} = (\sin t, \cos t, e^t)$.

Solution: $T(\sin t) = \cos t$, $T(\cos t) = -\sin t$ and $T(e^t) = e^t$. So $[T(\sin t)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $[T(\cos t)]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$ and $[T(e^t)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

5. (12 points) Let $\langle -, - \rangle$ be an inner product on a linear space V and $k \in \mathbb{R}$. Consider the function $\langle -, - \rangle : V \times V \to \mathbb{R}$ defined by

$$\langle \langle f, g \rangle \rangle = k \langle f, g \rangle.$$

Prove that $\langle -, - \rangle$ is an inner product on V if and only if k > 0.

Solution : Since $\langle -, - \rangle$ is an inner product on V, for any $f, g, h \in V$ and $c \in \mathbb{R}$,

- (i) $\langle f, g \rangle = \langle g, f \rangle$. Then $\langle f, g \rangle = k \langle f, g \rangle = k \langle g, f \rangle = \langle g, f \rangle$.
- (ii) $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$. Then

$$\langle \langle f + g, h \rangle \rangle = k \langle f + g, h \rangle = k (\langle f, h \rangle + \langle g, h \rangle) k \langle f, h \rangle + k \langle g, h \rangle = \langle \langle f, h \rangle \rangle + \langle \langle g, h \rangle \rangle$$

- (iii) $\langle cf, g \rangle = c\langle f, g \rangle$. Then $\langle cf, g \rangle = k\langle cf, g \rangle = k\langle c\langle f, g \rangle = c\langle f, g \rangle$.
- (iv) $\langle f, f \rangle > 0$ if $f \neq 0$. Now $\langle f, f \rangle = k \langle f, f \rangle > 0$ if and only if k > 0.

We have shown $\langle -, - \rangle$ always satisfies the symmetry and linearity conditions while it satisfies positive-definiteness if and only if k > 0. Thus $\langle -, - \rangle$ is an inner product if and only if k > 0.

6. Let A be a 4×4 matrix

$$A = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{x} \\ | & | & | & | \end{bmatrix},$$

where $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are fixed vectors in \mathbb{R}^4 and \mathbf{x} is any vector in \mathbb{R}^4 .

Let $T: \mathbb{R}^4 \to \mathbb{R}$ be the linear transformation defined as $T(\mathbf{x}) = \det(A)$.

Suppose $T(\mathbf{e}_1) = 4$, $T(\mathbf{e}_2) = 1$, $T(\mathbf{e}_3) = -1$ and $T(\mathbf{e}_4) = 2$. Explain your answers for each of the following.

(a) (3 points) What is
$$T \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
?

Solution: T is linear in its argument, so

$$T\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} = T\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + 2T\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + 3T\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + 4T\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = 4 + 2(1) + 3(-1) + 4(2) = 11.$$

(b) (6 points) If
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} - & \mathbf{x}^T & - \\ - & 2\mathbf{v}_1^T & - \\ - & 4\mathbf{v}_2^T & - \\ - & 6\mathbf{v}_3^T & - \end{bmatrix}$, what is $\det(B)$?

Solution: Note that three row swaps take B to $B' = \begin{bmatrix} -2\mathbf{v}_1^T & -\\ -4\mathbf{v}_2^T & -\\ -6\mathbf{v}_3^T & -\\ -\mathbf{x}^T & - \end{bmatrix}$, and B'^T is

the matrix A with columns multiplied by 2, 4 and 6. Thus

$$\det(B) = -\det(B') = -\det(B'^T) = -2 \cdot 4 \cdot 6 \det(A) = -48 \det(A) = -48 T(\mathbf{x}).$$

Thus $\det(B) = -48 \cdot 11 = -528$.

(c) (3 points) If A is not invertible when $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ a \\ b \end{bmatrix}$, how are a and b related?

Solution: For A to not be invertible, det(A) = 0. Here, $det(A) = T(\begin{bmatrix} 1 \\ 2 \\ a \\ b \end{bmatrix}) =$

- 1(4) + 2(1) + a(-1) + b(2) = 6 a + 2b. Thus we require a = 6 + 2b.
- (d) (6 points) Let $S_n(\mathbf{x}) = \det(A^n)$. Is $S_8(\mathbf{x})$ ever negative? Is there a vector \mathbf{x} such that $S_5(\mathbf{x}) = 0$?

Solution: We have $S_n(\mathbf{x}) = \det(A^n) = (\det(A))^n$. Thus $S_8(\mathbf{x}) = (\det(A))^8 \ge 0$, and $S_8(\mathbf{x})$ is never negative. Then $S_5(\mathbf{x}) = (\det(A))^5 = 0$ if $\det(A) = 0$. From (c)

we know this is possible; e.g., if $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 6 \\ 0 \end{bmatrix}$.

7. (8 points) Show that T(p) = p(0) is a linear transformation from P_1 to \mathbb{R} and find a basis for its kernel. What is rank(T)?

Solution: T is a linear transformation because

$$T(a_1t + b_1 + a_2t + b_2) = b_1 + b_2 = T(a_1t + b_1) + T(a_2t + b_2)$$

 $T(k(at + b)) = kb = kT(b).$

The kernel of T is

$$\{at + b|T(at + b) = 0\} = \{at|a \in \mathbb{R}\}\$$

and $\{t\}$ is a basis for it. By rank-nullity theorem, $rank(T) = \dim P_1 - \dim \ker T = 1$.

8. (9 points) Let V be a finite dimensional linear space with $\dim(V) = n$, and let $S, T : V \to \mathbb{R}$ be linear transformations such that $\ker(T) \subseteq \ker(S)$. What are the possible values of rank(T)? Prove that S = kT for some $k \in \mathbb{R}$.

Solution: Since $\operatorname{im}(T) \subset \mathbb{R}$ either $\operatorname{im}(T) = \{0\}$ or $\operatorname{im}(T) = \mathbb{R}$. So $\operatorname{rank}(T) \in \{0, 1\}$. Note that both possibilities could occur: if T = 0 then $\operatorname{rank}(T) = 0$ and if $V = \mathbb{R}$ and $T = \operatorname{id}$ then $\operatorname{rank}(T) = 1$.

Suppose that T = 0. Then $\ker(T) = V$ and hence $\ker(S) = V$ as well. In this case S = 0 and S = kT for any $k \in \mathbb{R}$. Now let's suppose that $T \neq 0$. Then by the rank nullity theorem $\ker(T)$ is (n-1) dimensional. Let $\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}$ be a basis for $\ker(T)$. We can extend this basis to a basis $\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n$ of V. Since \mathbf{v}_n is not redundant, it is not in the kernel of T. Therefore $T(\mathbf{v}_n) \neq 0$ and it makes sense to set $k = S(\mathbf{v}_n)/T(\mathbf{v}_n)$. Notice that since $\mathbf{v}_1, \ldots, \mathbf{v}_{n-1} \in \ker(T)$, they are also in the kernel of S. Let $\mathbf{v} \in V$. We can write it as

$$\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$$

for some $a_1, \ldots, a_n \in \mathbb{R}$. Then

$$S(\mathbf{v}) = a_1 S(\mathbf{v}_1) + \dots + a_{n-1} S(\mathbf{v}_{n-1}) + a_n S(\mathbf{v}_n) = a_n S(\mathbf{v}_n) = a_n k T(\mathbf{v}_n) = k T(\mathbf{v}).$$

We conclude that since **v** was arbitrary, S = kT.