
MATH 217 SPRING 2014
WRITTEN HOMEWORK 10

SOLUTIONS

Section 5.2

Problem 40. Denote the column vectors of A by v1, . . .vn, so that

A =

 | | · · · |
v1 v2 · · · vn

| | · · · |

 .

Since the vectors v1, . . .vn are orthogonal to one another, they are linearly independent
and thus form a basis for Rn. We can easily obtain an orthonormal basis by divining each
vj by its length. That is, for each j = 1, 2, . . . , n, let

uj =
1

||vj ||
vj , or equivalently vj = ||vj ||uj .

Then the vectors u1,u2, . . . ,un are orthonormal. Notice that

A =

 | | · · · |
v1 v2 · · · vn

| | · · · |

 =

 | | · · · |
u1 u2 · · · un

| | · · · |




||v1|| 0 0 0 . . . 0
0 ||v2|| 0 0 . . . 0
0 0 ||v3|| 0 . . . 0
0 0 0 ||v4|| . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . ||vn||


,

which is the QR-factorization. That is, the upper-diagonal R-matrix is in fact diagonal.

Section 5.3

Problem 30. Let L : Rm → Rn be length preserving. Let x ∈ ker(L). Then Lx = 0.
Since L is length preserving, ||x|| = ||Lx|| = ||0||, and so x = 0. Thus ker(L) = {0}.

Since ker(L) = 0, the rank-nullity theorem implies that the dimension of the image of L
is m. Since im(L) ⊂ Rn, we must have m ≤ n.

Denoting by ej the j-th standard vector in Rm, and letting A be the matrix for the
transformation L, we see that

A =

 | | · · · |
Le1 Le2 · · · Lem
| | · · · |

 .

Since the vectors Le1, Le2, . . . , Lem ∈ Rn span im(L), and the dimension of im(L) is m, the
vectors Le1, Le2, . . . , Lem ∈ Rn must in fact form a basis for im(L). In fact, these vectors
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are orthogonal to eachother. To see this, consider that ||ei + ej ||2 = ||L(ei + ej)||2 =
||Lei+Lej ||2. Assume that i 6= j so that ei · ej = 0. In terms of the dot product, this gives

(ei + ej) · (ei + ej) = (Lei + Lej) · (Lei + Lej).

Expanding both sides of this dot product gives

||ei||2 + ||ej ||2 = ||Lei||2 + ||Lej ||2 + 2(Lei) · (Lej).
Since L is length preserving, the above equation simplifies to (Lei) · (Lej) = 0. We can
therefore see that the colums of A form an orthonormal basis for im(L) ⊂ Rn.

The matrix ATA is

ATA =


− Le1 −
− Le2 −
...

...
...

− Lem −


 | | · · · |
Le1 Le2 · · · Lem
| | · · · |

 .

Since the vectors Le1, Le2, . . . Lem are orthonormal, the above matrix multiplication give
ATA = Im.

Let x ∈ Rn. Then

AATx = A(ATx) =

 | | · · · |
Le1 Le2 · · · Lem
| | · · · |



(Le1) · x
(Le2) · x
(Le3) · x

...
(Lem) · x


= [(Le1) · x]Le1 + [(Le2) · x]Le2 + · · ·+ [(Lem) · x]Lem,

which is the projection of x onto im(A). Thus AAT is the matrix for the the projection
onto im(L) in Rn.

As a simple example, consider L : R2 → R3 given by L

[
x
y

]
=

xy
0

 . The matrix for this

transformation is

A =

1 0
0 1
0 0

 ,

which clearly has rank 2. It is easy to see

ATA =

[
1 0 0
0 1 0

]1 0
0 1
0 0

 =

[
1 0
0 1

]
, AAT =

1 0
0 1
0 0

[1 0 0
0 1 0

]
=

1 0 0
0 1 0
0 0 0

 .

The matrix AAT shown above is the matrix for projection onto the xy-plane in R3:1 0 0
0 1 0
0 0 0

xy
z

 =

xy
0

 .
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Problem 31. Let A be an orthogonal matrix, i.e. it has orthonormal columns. Then A
is invertible and A−1 is orthogonal as well. In fact, by Theorem 5.3.7, A−1 = AT , so the
columns of AT are orthonormal. Since the columns of AT are the rows of A, it follows that
the rows of A are orthonormal as well.

Problem 46. We start withM = QR, whereM ∈ Rn×m has linearly independent columns,
Q ∈ Rn×m has orthonormal columns, and R ∈ Rm×m is upper triangular with positive
entries on the diagonal. Since Q has orthonormal columns, QTQ = Im. Multiplying on the
left by QT , the equation M = QR becomes QTM = QTQR = ImR = R. Equivalently,
R = QTM.

Problem 48. Since A is invertible, it has rank n. Since rank(A) =rank(AT ), we see that
rank(AT ) = n, so AT is invertible as well, and so it has a unique QR-factorization. That is,
we can write AT = QR whereQ is orthogonal and R is upper-triangular with positive entries
on the diagonal. Taking the transpose of both sides of this equation gives (AT )T = (QR)T ,
or equivalently A = RTQT . Notice that RT is lower triangular with positive entries on the
diagonal, and QT is orthogonal.

Problem 72. Let V = span(v). An orthonormal basis for V is u = 1
||v||v. According to

Theorem 5.3.10, the matrix for the orthogonal projection onto V is P = QQT , where

Q =

 |u
|

 =
1

||v||

 |v
|

 =
1

||v||


1
a
a2

...
an−1

 .

Then P is

P = QQT =
1

||v||2


1
a
a2

...
an−1


[
1 a a2 · · · an−1

]
=

1

||v||2


1 a a2 · · · an−1

a a2 a3 · · · an
a2 a3 a4 · · · an+1

...
...

...
. . .

...
an−1 an an+1 · · · a2n−2

 ,

which is a Hankel matrix according to the definition in Exercise 71.

In the case v =

12
4

, we have ||v||2 = 21, so

P =
1

21

1 2 4
2 4 8
4 8 16

 .
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Section 5.4

Problem 10.
(a) Since the system is consistent, it has some solution x. Since ker(A) and (ker(A))⊥ are

complementary spaces, we can write x in the form x = xh + x0 where xh ∈ kerA and
xo ∈ (kerA)⊥. We thus have b = Ax = A(xh + x0) = Axh + Ax0 = Ax0, where we
have used the fact that Axh = 0 since xh ∈ kerA. Thus Ax0 = b, and so x0 solves the
system as well.

(b) Suppose x0 and x1 are two solutions to the system Ax = b, and x0 and x1 are both in
(kerA)⊥. Then A(x0 − x1) = Ax0 −Ax1 = b−b = 0, and so x0 − x1 ∈ kerA. On the
other hand x0 − x1 ∈ (kerA)⊥ since it is a linear combination of vectors in (kerA)⊥.
Since kerA and (kerA)⊥ are complementary subspaces, their intersection consists of
only the zero vector. This implies x0 − x1 = 0 and so x0 = x1, thus there is only one
solution to Ax = b which lies in (kerA)⊥.

(c) Let x0 ∈ (kerA)⊥ and x1 /∈ (kerA)⊥ be two solutions to the linear system Ax = b. The
vector x1 can be written as the sum x1 = x

||
1+x⊥1 , where x

||
1 ∈ kerA and x⊥1 ∈ (kerA)⊥.

Notice then that b = Ax1 = Ax
||
1+Ax⊥1 = Ax⊥1 , and so x⊥1 also solves the linear system

Ax = b. According to part (b), we must have x⊥1 = x0. Thus x1 = x0 + x
||
1 , where x

||
1

is a nonzero vector in kerA. Notice

||x1||2 = x1 · x1 = (x0 + x
||
1) · (x0 + x

||
1) = ||x0||2 + ||x||1 ||

2 + 2(x0) · (x||1).

Since x
||
1 ∈ kerA and x0 ∈ (kerA)⊥, (x0) · (x||1) = 0, so the above equation is

||x1||2 = ||x0||2 + ||x||1 ||
2 > ||x0||2,

since x
||
1 6= 0.

Problem 11.
(a) Let y1,y2 ∈ Rm, and denote L+(y1) = x1 and L+(y2) = x2. This means that Ax1 =

y1, Ax2 = y2, and that x1,x2 ∈ (kerA)⊥. Since (kerA)⊥ is a subspace of Rn, we have
kx1 + x2 ∈ (kerA)⊥ for any scalar k ∈ R. Consider the linear combination ky1 + y2.
Applying L+ to this vector, we have by definition

L+(ky1 + y2) =
(
the solution to the system Ax = ky1 + y2 which lies in (kerA)⊥

)
.

Notice that A(kx1 + x2) = kAx1 + Ax2 = ky1 + y2, so kx1 + x2 clearly solves the
system Ax = ky1+y2. As mentioned above, kx1+x2 ∈ (kerA)⊥, thus L+(ky1+y2) =
kx1 + x2 = kL+(y1) + L+(y2). This proves that L+ is a linear transformation.

(b) Denote L+(y) = x. By definition, Lx = y. This which immediately implies L(L+(y)) =
L(x) = y.

(c) Let x ∈ Rn. x can be written in the form x = x|| + x⊥, where x|| ∈ kerL and
x⊥ ∈ (kerL)⊥. Then Lx = L(x|| + x⊥) = Lx|| +Lx⊥ = Lx⊥. Alpying L+ we find that

L+(Lx) = L+(Lx⊥) =
(
the solution to the system Ax = Ax⊥ which lies in (kerA)⊥

)
,
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which is clearly x⊥. Thus L+(L(x)) = x⊥. In other words, L+L is the orthogonal
projection onto (kerL)⊥.

(d) Let y ∈ ker(L+), so that L+(y) = 0. By definition, this means that L0 = y, so we
must have ker(L+) = 0. By the rank-nullity theorem, dim(imL+) = m.

Notice that since rank(A) = m, the rank-nullity theorem implies that dim(kerA) =
n−m, and so dim((kerA)⊥) = n− (n−m) = n. The image of L+ is clearly contained
in (kerA)⊥. Since dim(imL+) = m =dim((kerA)⊥), we must have im(L+) = (kerA)⊥.

(e) Let A =

[
1 0 0
0 1 0

]
. Then kerA =span

00
1

, and so (kerA)⊥ =span

10
0

 ,

01
0

.

Let y =

[
y1
y2

]
∈ R2. Then Ax = y for any x ∈ R3 of the form x =

y1y2
t

 for any t ∈ R.

If x is to be in (kerA)⊥, we must choose t = 0. Thus we have

L+

[
y1
y2

]
=

y1y2
0

 .

Section 5.5

Problem 18. Let B = (g1, g2, . . . , gn) be an orthonormal basis for V . Let f ∈ V have

the coordinates [f ]B =


c1
c2
...
cn

 for some real numbers c1, c2, . . . , cn. Cleatly then ||[f ]B||2 =

c21 + c22 + · · ·+ c2n.
Since f = c1g1 + c2g2 + · · ·+ cngn, we have

||f ||2 = 〈c1g1 + c2g2 + · · ·+ cngn, c1g1 + c2g2 + · · ·+ cngn〉.
By the bilinear property of the inner product we can expand the inner product:

||f ||2 =
n∑

i,j=1

〈cigi, cjgj〉.

Since the basis elements of B are orthogonal to one another, many terms in the expansion
are zero. The nonzero terms are the ones with i = j:

||f ||2 = 〈c1g1, c1g1〉+〈c2g2, c2g2〉+· · ·+〈cngn, cngn〉 = c21〈g1, g1〉+c22〈g2, g2〉+· · ·+c2n〈gn, gn〉.
Since the basis elements have norm 1, this simplifies to

||f ||2 = c21 + c22 + · · ·+ c2n = ||[f ]B||2.


