MATH 217 SPRING 2014
WRITTEN HOMEWORK 10
SOLUTIONS

SECTION 5.2

Problem 40. Denote the column vectors of A by vy,...v,, so that

A= |vi vy - Vv,

Since the vectors vi,...v, are orthogonal to one another, they are linearly independent
and thus form a basis for R". We can easily obtain an orthonormal basis by divining each
v; by its length. That is, for each j =1,2,...,n, let

1
u; = ij, or equivalently v; = HVjHuj-
J

Then the vectors ui, us, ..., u, are orthonormal. Notice that

vl 0 0 0 0

0 [lvof[ 0 0 0

. | I 0 0 vyl o 0

A= vy vo -+ vpl=]u w - u, 0 0 0 2 0
. | o | : . : —_— .

0 0 0 0 ... |lvall

which is the Q R-factorization. That is, the upper-diagonal R-matrix is in fact diagonal.

SECTION 5.3

Problem 30. Let L : R™ — R" be length preserving. Let x € ker(L). Then Lx = 0.
Since L is length preserving, ||x|| = ||Lx|| = ||0||, and so x = 0. Thus ker(L) = {0}.

Since ker(L) = 0, the rank-nullity theorem implies that the dimension of the image of L
is m. Since im(L) C R™, we must have m < n.

Denoting by e; the j-th standard vector in R™, and letting A be the matrix for the
transformation L, we see that

A= L61 Leg Lem

Since the vectors Leq, Les, ..., Le,, € R™ span im(L), and the dimension of im(L) is m, the
vectors Leq, Les, ..., Le, € R™ must in fact form a basis for im(L). In fact, these vectors
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1> =

are orthogonal to eachother. To see this, consider that ||e; + e;||> = ||L(e; + e;)
||Le; + Le;||?. Assume that i # j so that e;-e; = 0. In terms of the dot product, this gives
(ei + ej) . (ei + ej) = (Lei + Lej) . (Lei + Lej).

Expanding both sides of this dot product gives
leill + llelI* = [|Lel|* + || Le;|[* +2(Les) - (Ley).

Since L is length preserving, the above equation simplifies to (Le;) - (Lej) = 0. We can
therefore see that the colums of A form an orthonormal basis for im(L) C R™.
The matrix AT A is
— Le; -—
— Ley —| |1 I
. . Le1 Le2 Lem

AT A =
— Le,,
Since the vectors Leq, Les, ... Le,, are orthonormal, the above matrix multiplication give

ATA=1,.
Let x € R™. Then

(Lel) - X
| | , (Leg) - x
AATx = A(ATx) = |Le; Ley --- Le,, (Led) - X

| (Lep) - x|
= [(Ley) - x|Le; + [(Lez) - x]Lex + - - - + [(Ley,) - x| Ley,

which is the projection of x onto im(A4). Thus AA” is the matrix for the the projection

onto im(L) in R™.

As a simple example, consider L : R? — R3 given by L [ﬂ = . The matrix for this

ow &

transformation is

A=

O O =
O = O

which clearly has rank 2. It is easy to see

10 10 100
ATA_{328}01_B ?],AAT_OlLl)?g]—Olo
00 00 00 0

The matrix AAT shown above is the matrix for projection onto the xy-plane in R3:

1 0 0| |z T
of ly| = |y
0| |z 0
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Problem 31. Let A be an orthogonal matrix, i.e. it has orthonormal columns. Then A
is invertible and A~' is orthogonal as well. In fact, by Theorem 5.3.7, A=' = AT so the
columns of AT are orthonormal. Since the columns of AT are the rows of A, it follows that
the rows of A are orthonormal as well.

Problem 46. We start with M = QR, where M € R™ ™ has linearly independent columns,
Q € R™™ has orthonormal columns, and R € R"™*™ is upper triangular with positive
entries on the diagonal. Since @ has orthonormal columns, Q7Q = I,,,. Multiplying on the
left by QT, the equation M = QR becomes QT M = QTQR = I,,R = R. Equivalently,
R=Q"M.

Problem 48. Since A is invertible, it has rank n. Since rank(A) =rank(AT), we see that
rank(AT) = n, so AT is invertible as well, and so it has a unique Q R-factorization. That is,
we can write AT = QR where Q is orthogonal and R is upper-triangular with positive entries
on the diagonal. Taking the transpose of both sides of this equation gives (AT)” = (QR)7,
or equivalently A = RTQT. Notice that R” is lower triangular with positive entries on the
diagonal, and Q7 is orthogonal.

Problem 72. Let V = span(v). An orthonormal basis for V' is u = ﬁv. According to
Theorem 5.3.10, the matrix for the orthogonal projection onto V is P = QQT, where

1
1T 1]
Q = u = — Vv = — a2
GO
_an_l_
Then P is
[ 1 ] [ 1 a a? a1
) a ) a a? a3 an,
P = QQT — 5 a2 [1 a CL2 e an_1j| — 5 CL2 CLS CL4 CLn+1
vl : [[vl] S
1 an—l am an—H a2n—2

which is a Hankel matrix according to the definition in Exercise 71.

1
In the case v = |2|, we have ||v||?> = 21, so
|4
1 1 2 4
4 8 16
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SECTION 5.4

Problem 10.

(a) Since the system is consistent, it has some solution x. Since ker(A) and (ker(A))* are
complementary spaces, we can write x in the form x = x; + xg where x; € ker A and
X, € (ker A)*. We thus have b = Ax = A(x), + X¢) = Ax), + Axg = Ax(, where we
have used the fact that Ax; = 0 since x;, € ker A. Thus Axg = b, and so xg solves the
system as well.

(b) Suppose xg and x; are two solutions to the system Ax = b, and x¢ and x; are both in
(ker A)t. Then A(xg —x1) = Axg — Ax; = b —b =0, and so x¢ — x; € ker A. On the
other hand xg — x; € (ker A)* since it is a linear combination of vectors in (ker A)*.
Since ker A and (ker A)* are complementary subspaces, their intersection consists of
only the zero vector. This implies xg — x1 = 0 and so xg = X1, thus there is only one
solution to Ax = b which lies in (ker A)L.

(c) Let xq € (ker A)* and x; ¢ (ker A)* be two solutions to the linear system Ax = b. The
I

vector x; can be written as the sum x; = x| +xi, where x|1| € ker A and x7- € (ker A)*.
Notice then that b = Az = Ax‘1| +Axi = Axi, and so xi also solves the linear system

Ax = b. According to part (b), we must have x{- = xq. Thus x1 = xg + x!, where x!

is a nonzero vector in ker A. Notice
112 = x1 - x1 = (x50 + %) - (0 +x}) = |[x0]12 + |Ix}]12 + 2(x0) - (x}).

Since x‘1| € ker A and x¢ € (ker A)*, (xo) - (xll‘) = 0, so the above equation is

(a2 = [Ixol |2 + [I]I% > [Iol %
since x|1| # 0.

Problem 11.

(a) Let y1,y2 € R™, and denote L™ (y1) = x; and LT (y2) = xo. This means that Ax; =
y1, AXo = yo, and that x;,x3 € (ker A)*. Since (ker A)* is a subspace of R", we have
kx; + x2 € (ker A)* for any scalar k& € R. Consider the linear combination ky; + y2.
Applying L™ to this vector, we have by definition

Lt (ky1 +y2) = (the solution to the system Ax = ky; + y2 which lies in (ker A)L) .

Notice that A(kx; + x2) = kAx; + Axs = ky1 + y2, so kx; + X2 clearly solves the
system Ax = ky; +Yyo. As mentioned above, kx1 +x2 € (ker A)*, thus LT (ky; +y2) =
kxi +x3 = kLT (y1) + LT (y2). This proves that L™ is a linear transformation.

(b) Denote L*(y) = x. By definition, Lx = y. This which immediately implies L(L" (y)) =
L(x) =y.

(c) Let x € R™. x can be written in the form x = x!l + x*, where xIl € ker L and
x+ € (ker L)*. Then Lx = L(xl + x*) = Lxll + Lx* = Lx"'. Alpying L* we find that

LY (Lx) = LT (Lx') = (the solution to the system Ax = Ax® which lies in (ker A)L> ,



MATH 217 SPRING 2014 WRITTEN HOMEWORK 10 SOLUTIONS 5

which is clearly x*. Thus LT(L(x)) = x*. In other words, LTL is the orthogonal
projection onto (ker L)*.
(d) Let y € ker(L"), so that L*(y) = 0. By definition, this means that LO = y, so we
must have ker(L™) = 0. By the rank-nullity theorem, dim(im L*) = m.
Notice that since rank(A) = m, the rank-nullity theorem implies that dim(ker A) =
n —m, and so dim((ker A)*) =n — (n —m) = n. The image of LT is clearly contained
in (ker A)*. Since dim(im L*) = m =dim((ker A)*), we must have im(L*) = (ker A)*.

0 1 0
(e) Let A = [(1] (1) 8} . Then ker A =span| [0]| |, and so (ker A)* =span| [0], |1
1 0 0
Y1
Let y = Bl] € R2. Then Ax =y for any x € R? of the form x = |yo| for any ¢t € R.
2
t

If x is to be in (ker A)*, we must choose ¢ = 0. Thus we have

n
Lt [?ﬂ] — |y
Y2 0

SECTION 5.5

Problem 18. Let B = (g1, 92,...,9,) be an orthonormal basis for V. Let f € V have
C1
C2

the coordinates [f]g = | . | for some real numbers ci, c,...,c,. Cleatly then ||[f]s||> =
Cn

A4+ 4.

Since f = c191 + cogo + - - + cpgn, we have
IFIIP = (c191 + caga + -+ + cagn, 191 + C2g2 + -+ + Cngn)-

By the bilinear property of the inner product we can expand the inner product:

n

A1 =D {eigir cjg;)-

i,j=1
Since the basis elements of B are orthogonal to one another, many terms in the expansion
are zero. The nonzero terms are the ones with ¢ = j:

FI1? = (c1g1, c1g1)+(c2g2, c2g2) ++ -+ (Cngn: ngn) = €1 (g1, 91)+5(g2, 92)++ - +Co(Gn: Gn)-
Since the basis elements have norm 1, this simplifies to

1P =ct+ 3+ +c; = llf]sl*



