MATH 217 SPRING 2014 WRITTEN HOMEWORK 11 SOLUTIONS

SECTION 5.5

Problem 10. Let $g(t) = at^2 + bt + c \in P_2$ be orthogonal to f(t) = t. So $\langle f, g \rangle = 0$ that is $\int_{-1}^{1} t(at^2 + bt + c) dt = 2b/3 = 0$ or equivalently b = 0. Thus $f_1 = 1$ and $f_2 = t^2$ form a basis of V, the space of all functions in P_2 orthogonal to f(t) = t. Now we apply the Gram-Schmidt algorithm to find an orthonormal basis (u_1, u_2) .

$$\langle f_1, f_1 \rangle = \frac{1}{2} \int_{-1}^{1} 1 \, dt = 1. \text{ Then } ||f_1|| = 1 \text{ and } u_1 = f_1 = 1.$$

$$\langle f_1, f_2 \rangle = \frac{1}{2} \int_{-1}^{1} t^2 \, dt = \frac{1}{3}. \text{ Then } f_2^{\perp} = f_2 - \langle f_1, f_2 \rangle f_1 = t^2 - \frac{1}{3}.$$

$$\langle f_2^{\perp}, f_2^{\perp} \rangle = \frac{1}{2} \int_{-1}^{1} (t^4 - \frac{2}{3}t^2 + \frac{1}{9}) \, dt = \frac{1}{2} (\frac{2}{5} - \frac{4}{9} + \frac{2}{9}) = \frac{4}{45}.$$
So $||f_2^{\perp}|| = \frac{2}{\sqrt{45}} \text{ and } u_2 = \frac{\sqrt{45}}{2} (t^2 - \frac{1}{3}).$

Problem 14.

(a) For any $f, g \in P_2$ and $x \in \mathbb{R}$, f(x)g(x) = g(x)f(x), so the symmetry axiom follows. For any $f, g, h \in P_2$ and $a, b, x \in \mathbb{R}$, (af+bb)(x)g(x) = (af(x)+bb(x))g(x) = af(x)g(x)+bb(x)g(x) so the linearity axioms

(af+bh)(x)g(x) = (af(x)+bh(x))g(x) = af(x)g(x)+bh(x)g(x), so the linearity axioms hold for $\langle -, - \rangle$.

For positive definiteness, consider $f \in P_2$ such that $\langle f, f \rangle = (f(1))^2 + (f(2))^2 = 0$. Non-negative numbers add up to 0 if and only if f(1) = 0 and f(2) = 0. Consider $f_k = k(x-1)(x-2)$ where $k \in \mathbb{R}$. So there are infinitely many polynomials $f \in P_2$ such that $f \neq 0$ but $\langle f, f \rangle = 0$ and the positive definiteness axiom fails. This is not an inner product.

(b) Symmetry and linearity axioms can be proved for $\langle -, - \rangle$ just as in part (a). Similar to part (a), consider $f \in P_2$ such that $\langle f, f \rangle = (f(1))^2 + (f(2))^2 + (f(3))^2 = 0$. Now f(1) = f(2) = f(3) = 0 and $f \in P_2$ is a polynomial of degree at most 2 with at least 3 distinct roots. The Fundamental Theorem of Algebra tells us f = 0. Thus we have proved $\langle f, f \rangle = 0 \Longrightarrow f = 0$.

Equivalently $f \neq 0 \implies \langle (f, f) \rangle = (f(1))^2 + (f(2))^2 + (f(3))^2 > 0$ and positive definiteness holds. This is an inner product.

Problem 23. $f_1 = 1$ and $f_2 = t$ form a basis of P_1 .

$$\langle f_1, f_1 \rangle = \frac{1}{2}(1+1) = 1$$
. Then $||f_1|| = 1$ and $u_1 = f_1 = 1$.

$$\langle f_1, f_2 \rangle = \frac{1}{2}(0+1) = \frac{1}{2}$$
. Then $f_2^{\perp} = f_2 - \langle f_1, f_2 \rangle f_1 = t - \frac{1}{2}$. $\langle f_2^{\perp}, f_2^{\perp} \rangle = \frac{1}{2}(-\frac{1}{2}(-\frac{1}{2}) + \frac{1}{2}(\frac{1}{2})) = \frac{1}{4}$.

$$\langle f_2^{\perp}, f_2^{\perp} \rangle = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{4}.$$

So $||f_2^{\perp}|| = \frac{1}{2}$ and $u_2 = 2t - 1$. Now u_1 and u_2 form an orthonormal basis of P_1 .

Problem 24.

- (a) $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle = 0 + 8 = 8$.
- (b) $||g+h||^2 = \langle g+h, g+h \rangle = \langle g, g \rangle + 2\langle g, h \rangle + \langle h, h \rangle = 1 + 2(3) + 50 = 57$. Therefore $||g+h|| = \sqrt{57}$.
- (c) Note that $\langle f, g \rangle = 0$, so f and g form an orthogonal basis for E.

$$\operatorname{proj}_{E}(h) = \frac{\langle f, h \rangle}{\langle f, f \rangle} f + \frac{\langle g, h \rangle}{\langle g, g \rangle} g = 2f + 3g$$

(d)
$$||f|| = \sqrt{\langle f, f \rangle} = 2$$
. So $u_1 = \frac{1}{2}f$. Since $\langle f, g \rangle = 0$, $g^{\perp} = g$. As $\langle g, g \rangle = 1$, $u_2 = g$. $h^{\perp} = h - \operatorname{proj}_E(h) = h - 2f - 3g$.

$$\langle h^{\perp}, h^{\perp} \rangle = \langle h, h \rangle + 4 \langle f, f \rangle + 9 \langle g, g \rangle - 4 \langle f, h \rangle - 6 \langle g, h \rangle + 12 \langle f, g \rangle = 50 + 16 + 9 - 32 - 18 = 25$$

Therefore $u_3 = \frac{1}{5} (h - 2f - 3g)$.

SECTION 6.1

Problem 20.

$$\det(A) = \det\begin{bmatrix} 1 & k & 1 \\ 0 & 1 & k+1 \\ 0 & 2 & 2k+3 \end{bmatrix} \text{ operations } R_2 - R_1, R_3 - R_1$$
$$= \det\begin{bmatrix} 1 & k+1 \\ 2 & 2k+3 \end{bmatrix} \text{ expanding along } R_1$$

Therefore $det(A) \neq 0$ and A is invertible for all values of k.

Problem 34. Using Theorem 6.1.5, $\det(A) = \det\begin{bmatrix} 4 & 5 \\ 3 & 6 \end{bmatrix} \det\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = 9(-5) = -45.$

Problem 56.

(a) If we swap both rows of M_2 , we get I_2 . Therefore $\det(M_2) = -\det(I) = -1$.

If we swap the first and last rows of M_3 , we get I_3 . Therefore $\det(M_3) = -\det(I) = -1$. If we swap the first and last, second and second last rows of M_4 , we get I_4 . Therefore $\det(M_4) = \det(I) = 1.$

If we swap the first and last, second and second last rows of M_5 , we get I_5 . Therefore $\det(M_5) = \det(I) = 1.$

If we swap the first and last, second and second last, third and third last rows of M_6 , we get I_6 . Therefore $\det(M_6) = -\det(I) = -1$.

If we swap the first and last, second and second last, third and third last rows of M_7 ,

we get I_7 . Therefore $det(M_7) = -det(I) = -1$.

(b) If n is even, we can swap R_i and R_{n+1-i} for i = 1, ..., n/2 in M_n and get I_n . These are n/2 row swaps. Therefore $\det(M_n) = (-1)^{n/2}$.

If n is odd, we can swap R_i and R_{n+1-i} for i = 1, ..., (n-1)/2 in M_n and get I_n . These are (n-1)/2 row swaps. (Note that the middle row remains unchanged.) Therefore $\det(M_n) = (-1)^{(n-1)/2}$.

SECTION 6.2

Problem 10. Use Gauss-Jordan elimination to show that the given matrix A is row-equivalent to I_5 . During this process, no row swaps are needed and all pivots equal 1. The only type of elementary row operation performed is adding a multiple of one row to another row which does not change the determinant. Therefore, $\det(A) = \det(I) = 1$.

Problem 26. Let M be any 2×2 symmetric matrix in V. Then $M = \begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. So $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in V$ span V. Also $a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0 \Longrightarrow \begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Longrightarrow a = b = c = 0.$

Therefore, M_1, M_2, M_3 are linearly independent. We can now use the basis $\mathcal{B} = (M_1, M_2, M_3)$ of V to find the \mathcal{B} -matrix of T.

$$T(M_1) = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} = 2M_1 + 2M_2 \implies [T(M_1)]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

$$T(M_2) = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} = 4M_1 + 4M_2 + 4M_3 \implies [T(M_2)]_{\mathcal{B}} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$$

$$T(M_3) = \begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 2 & 6 \end{bmatrix} = 2M_2 + 6M_3 \implies [T(M_3)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 2 \\ 6 \end{bmatrix}$$

Using the column-by-column formula, $B = [T]_{\mathcal{B}} = \begin{bmatrix} 2 & 4 & 0 \\ 2 & 4 & 2 \\ 0 & 4 & 6 \end{bmatrix}$. Then $\det(T) = \det(B) = 2(24 - 8) - 4(12 - 0) = -16$.

4

SECTION 6.3

$$\textbf{Problem 14. Let } A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \end{bmatrix}. \text{ Then } A^TA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 10 \\ 1 & 10 & 30 \end{bmatrix}.$$

$$\det(A^T A) = (120 - 100) - (30 - 10) + (10 - 4) = 6$$

The 3-volume of the 3-parallelepiped = $\sqrt{\det(A^TA)} = \sqrt{6}$.