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Section 5.5

Problem 10. Let g(t) = at2 + bt + c ∈ P2 be orthogonal to f(t) = t. So ⟨f, g⟩ = 0 that is
1

∫
−1

t(at2 + bt + c)dt = 2b/3 = 0 or equivalently b = 0. Thus f1 = 1andf2 = t2 form a basis of V ,

the space of all functions in P2 orthogonal to f(t) = t. Now we apply the Gram-Schmidt
algorithm to �nd an orthonormal basis (u1, u2).

⟨f1, f1⟩ = 1
2

1

∫
−1

1dt = 1. Then ∥f1∥ = 1 and u1 = f1 = 1.

⟨f1, f2⟩ = 1
2

1

∫
−1

t2 dt = 1
3 . Then f⊥2 = f2 − ⟨f1, f2⟩f1 = t2 − 1

3 .

⟨f⊥2 , f⊥2 ⟩ =
1
2

1

∫
−1

(t4 − 2
3 t

2 + 1
9)dt =

1
2(

2
5 −

4
9 +

2
9) =

4
45 .

So ∥f⊥2 ∥ =
2√
45

and u2 =
√
45
2 (t2 − 1

3).

Problem 14.

(a) For any f, g ∈ P2 and x ∈ R, f(x)g(x) = g(x)f(x), so the symmetry axiom follows. For
any f, g, h ∈ P2 and a, b, x ∈ R,
(af+bh)(x)g(x) = (af(x)+bh(x))g(x) = af(x)g(x)+bh(x)g(x), so the linearity axioms
hold for ⟨−,−⟩.

For positive de�niteness, consider f ∈ P2 such that ⟨f, f⟩ = (f(1))2 + (f(2))2 = 0.
Non-negative numbers add up to 0 if and only if f(1) = 0 and f(2) = 0. Consider
fk = k(x − 1)(x − 2) where k ∈ R. So there are in�nitely many polynomials f ∈ P2 such
that f ≠ 0 but ⟨f, f⟩ = 0 and the positive de�niteness axiom fails. This is not an inner
product.

(b) Symmetry and linearity axioms can be proved for ⟪−,−⟫ just as in part (a).
Similar to part (a), consider f ∈ P2 such that ⟪f, f⟫ = (f(1))2 + (f(2))2 + (f(3))2 = 0.
Now f(1) = f(2) = f(3) = 0 and f ∈ P2 is a polynomial of degree at most 2 with at least
3 distinct roots. The Fundamental Theorem of Algebra tells us f = 0. Thus we have
proved ⟪f, f⟫ = 0 Ô⇒ f = 0.

Equivalently f ≠ 0 Ô⇒ ⟪f, f⟫ = (f(1))2 + (f(2))2 + (f(3))2 > 0 and positive
de�niteness holds. This is an inner product.

1
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Problem 23. f1 = 1 and f2 = t form a basis of P1.
⟨f1, f1⟩ = 1

2(1 + 1) = 1. Then ∥f1∥ = 1 and u1 = f1 = 1.

⟨f1, f2⟩ = 1
2(0 + 1) =

1
2 . Then f⊥2 = f2 − ⟨f1, f2⟩f1 = t − 1

2 .

⟨f⊥2 , f⊥2 ⟩ =
1
2(−

1
2(−

1
2) +

1
2(

1
2)) =

1
4 .

So ∥f⊥2 ∥ =
1
2 and u2 = 2t − 1. Now u1 and u2 form an orthonormal basis of P1.

Problem 24.

(a) ⟨f, g + h⟩ = ⟨f, g⟩ + ⟨f, h⟩ = 0 + 8 = 8.

(b) ∥g+h∥2 = ⟨g+h, g+h⟩ = ⟨g, g⟩+2⟨g, h⟩+⟨h,h⟩ = 1+2(3)+50 = 57. Therefore ∥g+h∥ =
√
57.

(c) Note that ⟨f, g⟩ = 0, so f and g form an orthogonal basis for E.

projE(h) = ⟨f, h⟩
⟨f, f⟩

f + ⟨g, h⟩
⟨g, g⟩

g = 2f + 3g

(d) ∥f∥ =
√

⟨f, f⟩ = 2. So u1 = 1
2f . Since ⟨f, g⟩ = 0, g⊥ = g. As ⟨g, g⟩ = 1, u2 = g.

h⊥ = h − projE(h) = h − 2f − 3g.
⟨h⊥, h⊥⟩ = ⟨h,h⟩ + 4⟨f, f⟩ + 9⟨g, g⟩ − 4⟨f, h⟩ − 6⟨g, h⟩ + 12⟨f, g⟩ = 50 + 16 + 9 − 32 − 18 = 25

Therefore u3 = 1
5(h − 2f − 3g).

Section 6.1

Problem 20.

det(A) = det

⎡⎢⎢⎢⎢⎢⎣

1 k 1
0 1 k + 1
0 2 2k + 3

⎤⎥⎥⎥⎥⎥⎦
operations R2 −R1, R3 −R1

= det [1 k + 1
2 2k + 3] expanding along R1

= 1

Therefore det(A) ≠ 0 and A is invertible for all values of k.

Problem 34. Using Theorem 6.1.5, det(A) = det [4 5
3 6

] det [1 4
2 3

] = 9(−5) = −45.

Problem 56.

(a) If we swap both rows of M2, we get I2. Therefore det(M2) = −det(I) = −1.
If we swap the �rst and last rows of M3, we get I3. Therefore det(M3) = −det(I) = −1.
If we swap the �rst and last, second and second last rows of M4, we get I4. Therefore
det(M4) = det(I) = 1.
If we swap the �rst and last, second and second last rows of M5, we get I5. Therefore
det(M5) = det(I) = 1.
If we swap the �rst and last, second and second last, third and third last rows of M6,
we get I6. Therefore det(M6) = −det(I) = −1.
If we swap the �rst and last, second and second last, third and third last rows of M7,
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we get I7. Therefore det(M7) = −det(I) = −1.

(b) If n is even, we can swap Ri and Rn+1−i for i = 1, . . . , n/2 in Mn and get In. These are

n/2 row swaps. Therefore det(Mn) = (−1)n/2.
If n is odd, we can swap Ri and Rn+1−i for i = 1, . . . , (n−1)/2 inMn and get In. These

are (n − 1)/2 row swaps. (Note that the middle row remains unchanged.) Therefore

det(Mn) = (−1)(n−1)/2.

Section 6.2

Problem 10. Use Gauss-Jordan elimination to show that the given matrix A is row-
equivalent to I5. During this process, no row swaps are needed and all pivots equal 1. The
only type of elementary row operation performed is adding a multiple of one row to another
row which does not change the determinant. Therefore, det(A) = det(I) = 1.

Problem 26. Let M be any 2 × 2 symmetric matrix in V . Then M = [a b
b c

] = a [1 0
0 0

] +

b [0 1
1 0

]+ c [0 0
0 1

]. So M1 = [1 0
0 0

] ,M2 = [0 1
1 0

] ,M3 = [0 0
0 1

] ∈ V span V . Also a [1 0
0 0

]+

b [0 1
1 0

] + c [0 0
0 1

] = 0 Ô⇒ [a b
b c

] = [0 0
0 0

] Ô⇒ a = b = c = 0.

Therefore,M1,M2,M3 are linearly independent. We can now use the basis B = (M1,M2,M3)
of V to �nd the B-matrix of T .

T (M1) = [1 0
2 0

] + [1 2
0 0

] = [2 2
2 0

] = 2M1 + 2M2 Ô⇒ [T (M1)]B =
⎡⎢⎢⎢⎢⎢⎣

2
2
0

⎤⎥⎥⎥⎥⎥⎦

T (M2) = [2 1
3 2

] + [2 3
1 2

] = [4 4
4 4

] = 4M1 + 4M2 + 4M3 Ô⇒ [T (M2)]B =
⎡⎢⎢⎢⎢⎢⎣

4
4
4

⎤⎥⎥⎥⎥⎥⎦

T (M3) = [0 2
0 3

] + [0 0
2 3

] = [0 2
2 6

] = 2M2 + 6M3 Ô⇒ [T (M3)]B =
⎡⎢⎢⎢⎢⎢⎣

0
2
6

⎤⎥⎥⎥⎥⎥⎦

Using the column-by-column formula, B = [T ]B =
⎡⎢⎢⎢⎢⎢⎣

2 4 0
2 4 2
0 4 6

⎤⎥⎥⎥⎥⎥⎦
.

Then det(T ) = det(B) = 2(24 − 8) − 4(12 − 0) = −16.
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Section 6.3

Problem 14. Let A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 1 2
0 1 3
0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Then ATA =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 1 1
1 2 3 4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 1 2
0 1 3
0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1 1 1
1 4 10
1 10 30

⎤⎥⎥⎥⎥⎥⎦
.

det(ATA) = (120 − 100) − (30 − 10) + (10 − 4) = 6

The 3-volume of the 3-parallelepiped =
√
det(ATA) =

√
6.


