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SECTION 5.5

Problem 10. Let g(t) = at? + bt + ¢ € P, be orthogonal to f(t) =t. So (f,g) = 0 that is

1
[ t(at? + bt +c)dt = 2b/3 = 0 or equivalently b= 0. Thus fi = landfs = t* form a basis of V/,
21

the space of all functions in P, orthogonal to f(t) = t. Now we apply the Gram-Schmidt
algorithm to find an orthonormal basis (u1,u2).

1
(fi,f1)=2% [ 1dt=1. Then |fi| =1 and us = f1 = 1.
-1

1

(fi,f2) = 3 [#2dt = L. Then f4 = fo—{(f1, o) fr =2 - 1.

-1
1
U5 =3 (-3 D= 3G -4+ D=

So || /3] = 2= and up = Y25 (2 - 1),

1
V45 3

Problem 14.

(a)

For any f,g€ P> and z € R, f(x)g(x) = g(x) f(x), so the symmetry axiom follows. For
any f,g,h € Py and a,b,x € R,

(af+bh)(x)g(x) = (af(x)+bh(z))g(x) = af(x)g(z)+bh(x)g(x), so the linearity axioms
hold for (-, -).

For positive definiteness, consider f € P; such that (f,f) = (f(1))?+ (f(2))? = 0.
Non-negative numbers add up to 0 if and only if f(1) = 0 and f(2) = 0. Consider
fr =k(x-1)(x —2) where k € R. So there are infinitely many polynomials f € Py such
that f # 0 but (f, f) =0 and the positive definiteness axiom fails. This is not an inner
product.

Symmetry and linearity axioms can be proved for (-, -) just as in part (a).

Similar to part (a), consider f € Py such that (f, f) = (f(1))? + (f(2))% + (f(3))? = 0.
Now f(1) = f(2) = f(3) =0 and f € P» is a polynomial of degree at most 2 with at least
3 distinct roots. The Fundamental Theorem of Algebra tells us f = 0. Thus we have
proved (f, f) =0 —> f=0.

Equivalently f # 0 = (f,f) = (f(1))?+ (f(2))? + (f(3))? > 0 and positive
definiteness holds. This is an inner product.

1
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Problem 23. f; =1 and fs =t form a basis of P;.
(fi,fi)=2(1+1)=1. Then | fi| =1 and u; = f1 = 1.
(fi,f2) = 3(0+1) = 5. Then f3 = fo— (f1, fo) =t~ 3.
(f3,f3) = 3(3(3)+3(3)) = 3.
So | fal = % and ug = 2t — 1. Now u; and uy form an orthonormal basis of P;.

Problem 24.

(a) (f,g+h)=(f,g)+{f,h)=0+8=8.

(b) [g+h|*=(g+h,g+h) = (g,9)+2(g, h)+(h, h) = 1+2(3)+50 = 57. Therefore |g+h/| = /7.
(¢) Note that (f,g) =0, so f and g form an orthogonal basis for E.

projg(h) (f’f>f+ 0.0’ 2f +3g

() If] = V(f, f) =2 Sow =%f. Since (f,g) =0, g* =g. As (g,9) =1, up = g.
h* =h-projg(h) =h-2f - 3g.

(Bt B4 = (o h) + A(F, £) + 9{g. g) — 4(f,h) = 6(g, h) +12(f, g) = 50+ 16+ 9~ 32— 18 = 25
Therefore ug = %(h -2f-39).

SECTION 6.1

Problem 20.
1 k 1

det|]0 1 Ek+1 operations Ry — Ry, R3 — Ry
0 2 2t+3

det(A)

det [; Qk]gilg] expanding along R;

=1
Therefore det(A) # 0 and A is invertible for all values of k.

Problem 34. Using Theorem 6.1.5, det(A) = det [3 2] det [; g] =9(-5) = —45.

Problem 56.

(a) If we swap both rows of M, we get I5. Therefore det(Ma) = —det(I) = -1.
If we swap the first and last rows of M3, we get Is. Therefore det(Ms) = —det(I) = -1.
If we swap the first and last, second and second last rows of My, we get I;. Therefore
det(My) = det(I) = 1.
If we swap the first and last, second and second last rows of My, we get I5. Therefore
det(Ms) = det(I) = 1.
If we swap the first and last, second and second last, third and third last rows of Mg,
we get Ig. Therefore det(Msg) = —det(I) = -1.
If we swap the first and last, second and second last, third and third last rows of My,
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we get I7. Therefore det(M7) = —det(I) = -1.

(b) If n is even, we can swap R; and R,.1-; fori=1,...,n/2 in M, and get I,,. These are
n/2 row swaps. Therefore det(M,) = (-1)"/2.
If n is odd, we can swap R; and Ry41-; fori=1,...,(n-1)/2in M,, and get I,,. These
are (n—1)/2 row swaps. (Note that the middle row remains unchanged.) Therefore
det(M,,) = (-1)(»"D/2,

SECTION 6.2

Problem 10. Use Gauss-Jordan elimination to show that the given matrix A is row-
equivalent to Is. During this process, no row swaps are needed and all pivots equal 1. The
only type of elementary row operation performed is adding a multiple of one row to another
row which does not change the determinant. Therefore, det(A) = det(/) = 1.

a b 1
b 0

01 00 10 0 1 0 0 10
b[l 0]+c[0 1]. SoMlz[O 0],M2:[1 O]’MS:[O 1:|eVspa1r1V. Alsoa[o 0:|+

01 0 0 a b 0 0
b[l 0]+c[0 1]:O:>[b C]:[O 0:|:>a=b:c:O.

Therefore, My, My, M3 are linearly independent. We can now use the basis B = (My, My, M3)
of V to find the B-matrix of T

Problem 26. Let M be any 2 x 2 symmetric matrix in V. Then M = =a +

0
0

1 2
T(Ml)z[; 8:|+|:(1) (2)‘2[3 (2):|=2M1+2M2 - [T(Ml)]BZ (2)

_ 4
TOR) =2 [+ |7 Sl=|) =404+ adsy = [T(0)]s = |4
3 2[7[1 2|7 |4 4 4

T 0
T(M3)=[8 §]+[g §_=[3 Z]:2M2+6M3 = [T(M3)]p = 2

Using the column-by-column formula, B = [T']g =

O NN
=
DN O

Then det(T) = det(B) = 2(24 - 8) — 4(12 - 0) = —16.
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SECTION 6.3

—_ = =

1
Problem 14. Tet A = 8 . Then ATA =

=W N =
— = =
N = O
w = o
- = O
SO O
— = =

01
det(ATA) = (120 -100) - (30-10) + (10-4) = 6
The 3-volume of the 3-parallelepiped = +/det(ATA) = /6.
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