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Section 6.2

Problem 55. Suppose A,B ∈ Rn×n such that B is obtained after performing an elemen-
tary row operation on A. We will prove that if det(B) = D(B), then det(A) = D(A).

Assume det(B) = D(B) and consider each of the three types of elementary row operations
that could be performed on A.

(a) Swap Rows i and j. Then det(B) = −det(A). But we also know D is alternating
on rows, that is, D(B) = −D(A). Therefore det(A) = D(A).

(b) Divide Row i by a non-zero scalar k. Then det(B) = 1
k det(A). Since D is also

linear in each row, D(B) = 1
kD(A) and det(A) = D(A).

(c) Add k times Row j to Row i, i 6= j. Then det(B) = det(A). Since D is linear in
Row i of A, D(A) = D(B)+kD(C) where C is obtained from A by replacing Row i by
Row j. Now C has two equal rows. Swapping these rows leaves unchanged. Since D
is alternating, D(C) = −D(C). This implies D(C) = 0 and D(A) = D(B). Therefore
det(A) = D(A).

As a result, we see that if A such that det(rref(A)) = D(rref(A)), then D(A) = D(rref(A)).
It is enough to show that for any A ∈ Rn×n, det(rref(A)) = D(rref(A)).

Any A ∈ Rn×n is either non-invertible or invertible.
Case 1 : If A is not invertible, then rref(A) has a zero row and det(rref(A)) = 0. Since D
is linear in the zero row which equals 0 times itself,

D(rref(A)) = 0D(rref(A)) = 0 = det(rref(A)).

Case 2 : If A is invertible, then rref(A) = In and det(rref(A)) = 1. It is given that
D(rref(A)) = 1.

Section 6.3

Problem 10. By the Pythagorean theorem, ‖v⊥i ‖ ≤ ‖vi‖.
We know from Theorem 6.3.3 that | det(A)| = ‖v1‖‖v⊥2 ‖ . . . ‖v⊥n ‖ ≤ ‖v1‖‖v2‖ . . . ‖vn‖.
Equality holds if and only if each ‖v⊥i ‖ = ‖vi‖ if and only if each vi is orthogonal to

Span(v1, . . . ,vi−1) if and only if v1, . . . ,vn form an orthogonal set.

Problem 20. T preserves orientation if and only if for all v1,v2,v3 ∈ R3,

det[v1 v2 v3] > 0 =⇒ det[T (v1)T (v2)T (v3)] > 0.
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Let A be the standard matrix of T . Note that

[T (v1)T (v2)T (v3)] = [Av1Av2Av3] = A[v1 v2 v3].

Then

det[T (v1)T (v2)T (v3)] = det(A) det[v1 v2 v3] = det(T ) det[v1 v2 v3].

If det[v1 v2 v3] > 0, then det[T (v1)T (v2)T (v3)] > 0 if and only if det(T ) > 0. Thus, T

preserves orientation if and only if det(T ) > 0.

Section 7.1

Problem 34. We know Av = 4v.

(A2 + 2A+ 3I)v = A(Av) + 2(Av) + 3v = A(4v) + 8v + 3v = 16v + 11v = 27v

This shows v is an eigenvector of A2 + 2A+ 3I and the associated eigenvalue is 27.

Problem 44. For i = 1, . . . ,m, there exist λi ∈ R such that Aei = λiei, that is, the i
th

column of A is λiei. There are no restrictions on any entries in the last n −m columns.
Thus V = {A ∈ Rn×n : aij = 0, i 6= j, j = 1, . . . ,m}. Then dim(V ) = n(n−m) +m.

Problem 48. Let v 6= 0 such that v ∈ im(A). As rank(A) = dim(im(A)) = 1 and v 6= 0,
im(A) = Span(v). Now Av ∈ im(A) = Span(v). So there exists λ ∈ R such that Av = λv.
As v 6= 0, v must be an eigenvector of A.

Section 7.2

Problem 22.

fAT (λ) = det(AT − λI) = det((AT − λI)T ) = det((AT )T − (λI)T ) = det(A− λI) = fA(λ)

We see that A and AT have the same characteristic polynomial. This means A and its
transpose have the same eigenvalues with the same algebraic multiplicities.

Problem 40.

tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

n∑
j=1

aijbji =
n∑

j=1

n∑
i=1

bjiaij =
n∑

j=1

(BA)jj = tr(BA)

Section 7.3

Problem 34.

(a) Suppose B = S−1AS and x ∈ ker(B). Then Bx = S−1ASx = 0. Multiplying both
sides by S, A(Sx) = 0 and Sx ∈ ker(A).
Similarly, if y ∈ ker(A), then S−1y ∈ ker(B).
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(b) If the domain of T is ker(B), then part(a) implies im(T ) ⊆ ker(A). So T is a function
from ker(B) to ker(A). Note that S is not (necessarily) the standard matrix of T since
T is not de�ned on Rn, but on a subspace of Rn. However T is a linear transformation
since multiplication by S is linear.
If y ∈ ker(A), then the T (x) = y or Sx = y has the unique solution x = S−1y ∈ ker(B).
Thus T is an invertible linear transformation, that is, an isomorphism.

(c) Part (b) implies ker(B) ∼= ker(A). Then

nullity(B) = dim(ker(B)) = dim(ker(A)) = nullity(A).

Using the rank-nullity theorem,

rank(B) = n− nullity(B) = n− nullity(A) = rank(A).


