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SOLUTIONS

Section 2.4

Problem 35.

(a) If all of the diagonal terms a, d, and f are nonzero then the matrix A is already in
row echelon form, and we can see that rank(A) = 3. It follows that A is inveritble by
Theorem 2.4.3. Conversely if any of the diagonal terms are zero, then there are less
than 3 pivots, and so rank(A) < 3, thus A is not inveritible, again by Theorem 2.4.3.

(b) By an argument similiar to the one in part (a), an upper triangular matrix is invertible
if and only if all diagonal entries are nonzero.

(c) The inverse of an upper triangular matrix is also upper triangular. An upper triangular
matrix of size n × n with nonzero entries along the diagonal can be transformed to
reduced row echelon form in the following way: First multiply the last row by a constant
so that the row vector in the last row is en. Add a multiple of the last row to each of
the other rows so that the last column is also en. Then multiply the (n− 1)st row by
a constant so that it is en−1, and add multiples of this row to rows above it so that
the (n− 1)st column is en−1 as well. Continuing in this manner, we can reduce the jth
row to the vector ej for each j = n, n − 1, . . . , 1. Notice that the only row operations
necessary are multiplication of a row by a constant, and addition of a multiple of a
lower row to a higher row. Performing these row operations on the identity matrix
necessarily yields an upper triangular matrix. Thus the inverse of an upper triangular
matrix is upper triangular as well.

(d) A lower triangular matrix is invertible exactly when its diagonal entries are nonzero.
Consider a lower triangular matrix A, and think of it as the coefficient matrix for an
n× n linear system with unknowns (x1, x2, . . . , xn). Then A is invertibe if and only if
the equation

A


x1
x2
...
xn

 = 0

has a unique solution. Now let A1 be the matrix which is obtained from A by inter-
changing columns in the following way: the jth column of A is the (n− j)th column of
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A1. Then the linear equation above is equivalent to the linear system

A1


xn
xn−1
...
x1

 = 0,

and so A is invertible if and only if A1 is invertible. Notice that A1 has all zero entries
above its anti-diagonal, and that the diagonal entries of A are the anti-diagonal entries of
A1. The matrix A1 can be transformed to an upper triangular matrix A2 by interchanging
rows, and the anti-diagonal entries of A1 are the diagonal entries of A2. By part (b) we
know that A2 is invertible if and only if its diagonal entries are non-zero. Since A2 is row
equivalent to A1, it follows that A1 is invertible if and only if its anti-diagonal entries are
nonzero, or equaivalently when the diagonal entries of A are nonzero.

Problem 42. Permutation matrices are invertible. Since each row and column contain
exactly one 1, any permutation matrix is row equivalent to the identity matrix via inter-
change of rows. Likewise, starting from the identity matrix, any interchange of rows yields
a permutation matrix. This implies that the inverse of a permutation matrix is also a
permutation matrix.

Problem 99. Suppose A is invertible, and that A2 = A. Then we can multiply both sides
of the equation A2 = A on the right by A−1 to get A2A−1 = AA−1. Since AA−1 = In, the
right hand side is In. The left hand side is A2A−1 = A(AA−1) = A(In) = A. Therefore we
must have A = In.

Problem 100. Let A be an n× n matrix with identical entries:

A :=


a a . . . a
a a . . . a
...

...
. . .

...
a a . . . a

 ,

for some a 6= 0. From the definition of matrix multiplication, we find that each entry of A2

is (
A2
)
ij
=

n∑
k=1

a2 = na2.

In order to have A2 = A, we therefore must have

na2 = a,

which implies a = 1/n. Thus the matrix

A :=


1
n

1
n . . . 1

n
1
n

1
n . . . 1

n
...

...
. . .

...
1
n

1
n . . . 1

n

 ,
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satisfies A2 = A. Notice A is not invertible, so there is no contradiction with problem 99.

Section 3.1

Problem 44.
(a) Since A and B are row equivalent, so are the augmented matrices [A|0] and [B|0], and

so the sytems
Ax = 0 , and Bx = 0,

have the same solution sets. Thus ker(A) = ker(B).
(b) This is not true. Here is a counterexample. Let

A =

1 0
0 1
0 1

 , B =

1 0
0 1
0 0

 .

Clearly B =rref(A). Notice

B

[
x1
x2

]
=

x1x2
0

 ,

and so each vector in im(B) necessarily has zero third component. This is not true of
im(A). For example

A

[
1
1

]
=

11
1

 /∈ im(B).

Problem 48.
(a) Since w ∈ im(A), there is some vector v ∈ R2 such that Av = w. Thus Aw = A(Av) =

A2v. Since we assume A2 = A, we have Aw = Av = w.
(b) If rank(A) = 2, then A is invertible by Theorem 2.4.3. This implies that A = I2 by

problem 2.4.99.
(c) If rank(A)= 1, then ker(A) contains a nonzero vector (Theorem 3.1.7), and since the

kernel is closed under scalar multiplication (Theorem 3.1.6), it contains a line in the
direction of this vector. Call this line Lker. Similarly the image of A contains a line.
In fact, the image of A is a this line. Otherwise, the image of A would include two
non-parallel vectors, and therefore would include all of R2, by problem 2.2.33. This
cannot be, as the rank of A is only 1 (see Summary 3.1.8). Denote the line of the image
of A as Lim.

According to problem 2.2.33, if Lim 6= Lker, each vector v in R2 can be uniquely
expressed as

v = vker + vim.

If Lim = Lker, then im(A) =ker(A), and so A2 = 0. This is ruled out here since we
assume A2 = A, and A must have nonzero entries since it is assumed to have rank 1.

The projection P onto Lim along Lker is defined in problem 2.2.33. as

Pv = P (vim + vker) = vim.
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Let x ∈ R2, and write x = xim + xker. By linearity,

Ax = A(xim + xker) = Axim +Axker = Axim,

since Axker = 0. Since xim ∈ im(A), there is some w ∈ R2 such that Aw = xim, so we
have

Ax = Axim = A(Aw) = A2w = Aw = xim,

thus T is the projection P onto Lim along Lker.

Problem 49. Let T be a linear transformation, and let x1,x2, . . .xk ∈ ker(T ), so that
Tx1 = Tx2 = · · · = Txk = 0. By linearity, for any scalars a1, a2, . . . ak,

T (a1x1+a2x2+· · ·+akxk) = a1Tx1+a2Tx2+· · ·+akTxk = a1T0+a2T0+· · ·+akT0 = 0,

which implies that the linear combination a1x1 + a2x2 + · · ·+ akxk is also in the kernel of
T .

Problem 50. Indeed it must be that ker(A3) =ker(A4).

Proof. It is always true that ker(A3) ⊆ ker(A4), since A3x = 0 implies A4x = A(A3x) =
A0 = 0. We therefore need to show that there is no vector which is in ker(A4) but not in
ker(A3). We proceed by contradiction. Suppose there is some vector x ∈ ker(A4)\ ker(A3).
Then A4x = 0, and A3x 6= 0. Since A3(Ax) = A4x = 0, the vector Ax is in the kernel of
A3. Since A2(Ax) = A3x 6= 0, the vector Ax is not in the kernel of A2. This contradicts
the assumption that ker(A2) = ker(A3). It follows that there is no x ∈ ker(A4)\ ker(A3),
and thus ker(A3) =ker(A4). �

Section 3.2

Problem 6. Let V and W be subspaces of Rn.
(a) The intersection V ∩W is also a subspace. To prove this we need to show that V ∩W

contains the zero vector, and is closed under linear combination. Since V and W be
subspaces, 0 ∈ V and 0 ∈W , so clearly 0 ∈ V ∩W .

Now consider vectors x1,x2, . . . ,xk ∈ V ∩W. Any linear combination of these vectors
is in V , since the vectors x1,x2, . . . ,xk are all in V and V is a subspace. Any linear
combination of these vectors is also in W , since the vectors x1,x2, . . . ,xk are all in W
and W is also a subspace. Thus any linear combination of the vectors x1, x2, . . . ,xk is
in both V and W , thus in V ∩W .

(b) The union V ∪W is not necessarily a subspace. Here is a counterexample. Let V ∈ R2

be the horizontal axis (x-axis), and W ∈ R2 be the vertical axis (y-axis). That is,

V is spanned by the single vector
[
1
0

]
, and W is spanned by the single vector

[
0
1

]
.

The union of these two axes is not closed under linear combination. For example[
1
0

]
+

[
0
1

]
=

[
1
1

]
/∈ V ∪W .
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Problem 40. The columns of AB are linearly independent if and only if the linear system

(AB)x = 0,

has a unique solution. We can write the above system as

A(Bx) = 0.

Since the columns of A are linearly independent, the above equation holds if and only if
Bx = 0. Since the columns of B are also linearly independent, Bx = 0 if and only if x = 0.
Thus (AB)x = 0 if and only if x = 0, so the system has a unique solution. Therefore the
columns of AB are linearly independent.

Problem 42. Let v1,v2, . . . ,vm ∈ Rn be some unit vectors which are all perpendicular to
eachother, i.e. vi · vj = 0 for i 6= j. Suppose there is some linear relation between them

c1v1 + c2v2 + · · ·+ cmvm = 0.

Consider the dot product of v1 with the vectors on each side of this equation. On the right
side we have v1 · 0 = 0. On the left side we have

v1 · (c1v1 + c2v2 + · · ·+ cmvm) = c1(v1 · v1) + c2(v1 · v2) + · · ·+ cm(v1 · vm)

= c1||v1||2 + c2(0) + · · ·+ cm(0)

= c1,

as we have assumed all of the vectors vj have unit length. This implies that c1 = 0.
Similarly, taking the dot product of both sides with v2 implies that c2 = 0. In general for
each j = 1, 2, . . . ,m, taking the dot product of both sides with vj implies that cj = 0, and
so the linear relation can only be the trivial relation. Thus the vectors v1,v2, . . . ,vm are
linearly independent.


