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SOLUTIONS

Section 3.3

Problem 62. Let dim(V ) = m and let v1, . . . ,vm ∈ V ⊆ W form a basis of V . hese are
m linearly independent vectors in W . Theorem 3.3.4(a) implies dim(V ) = m ≤ dim(W ).

Problem 63. Suppose V ⊆ W and dim(V ) = dim(W ) = m. Let v1, . . . ,vm ∈ V ⊆ W
form a basis of V . Then they are linearly independent and V = Span(v1, . . . ,vm). Since
these are m linearly independent vectors in the m-dimensional space W , Theorem 3.3.4(c)
implies they also form a basis for W and W = Span(v1, . . . ,vm) = V .

Problem 66. Suppose for every x ∈ Rn, there exist unique v ∈ V and w ∈ W such that
x = v +w.
Let x ∈ V ∩W . Then x = x+0 = 0+x where v = x,w = 0 or v = 0,w = x. Uniqueness
implies x = 0 and V ∩W = {0}.
Consider a basis v1, . . . ,vp of V and a basis w1, . . . ,wq of W .
Let x ∈ Rn. There exist v ∈ V = Span(v1, . . . ,vp) and w ∈ W = Span(w1, . . . ,wq) such
that x = v +w ∈ Span(v1, . . . ,vp,w1, . . . ,wq). So these p+ q vectors span Rn.
Let c1, . . . , cp, d1, . . . , dq ∈ R such that c1v1 + . . . + cpvp + d1w1 + . . . + dqwq = 0. Note
that c1v1 + . . . + cpvp ∈ V and d1w1 + . . . + dqwq ∈ W and since 0 = 0 + 0 is a unique
representation, c1v1+. . .+cpvp = 0 and d1w1+. . .+dqwq = 0. The basis vectors v1, . . . ,vp

of V are linearly independent, so c1 = . . . = cp = 0. Similarly d1 = . . . = dq = 0.
Therefore, we can see that the vectors v1, . . . ,vp,w1, . . . ,wq must form a basis of Rn and
n = dim(Rn) = p+ q = dim(V ) + dim(W ).

Suppose V ∩W = {0} and dim(V ) + dim(W ) = n.
Consider a basis v1, . . . ,vp of V and a basis w1, . . . ,wq of W . Above we have proved
that V ∩ W = {0}, v1, . . . ,vp ∈ V are linearly independent and w1, . . . ,wq ∈ W are
linearly independent implies all the vectors v1, . . . ,vp,w1, . . . ,wq are linearly independent.
As dim(V ) + dim(W ) = n, these are n linearly independent vectors in Rn and they must
span Rn.
So for every x ∈ Rn, there exist c1, . . . , cp, d1, . . . , dq ∈ R such that v = c1v1+. . .+cpvp ∈ V ,
w = d1w1 + . . .+ dqwq ∈W and x = v +w.
Suppose there exist v1,v2 ∈ V and w1,w2 ∈ W such that x = v1 +w1 = v2 +w2. Then
v1−v2 = w2−w1 ∈ V ∩W . As V ∩W = {0}, v1 = v2 and w1 = w2. Thus every x ∈ Rn

has a unique representation and V,W are complements in Rn.
1
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Section 3.4

Problem 54. Let v1, . . . ,vn and I be bases of Rn. Suppose c1[v1]I + . . . + cn[vn]I = 0.
Due to linearity of coordinates [c1v1 + . . . + cnvn]I = c1[v1]I + . . . + cn[vn]I = 0 = [0]I .
Since the coordinate transformation is invertible, c1v1 + . . . + cnvn = 0. v1, . . . ,vn are
linearly independent, therefore c1 = . . . = cn = 0. Thus the vectors [v1]I , . . . , [vn]I are n
linearly independent vectors in Rn and they also form a basis of Rn.

Problem 56. Let B = {v1,v2} be the required basis of R2 and consider the 2 × 2

matrix S = [v1 v2]. For all x ∈ R2, x = S[x]B. Therefore

[
1 3
2 4

]
= S

[
3 2
5 3

]
and

S =

[
1 3
2 4

] [
−3 2
5 −3

]
=

[
12 −7
14 −8

]
. That is, v1 =

[
12
14

]
and v2 =

[
−7
−8

]
.

Problem 58.

(a) Consider the linear relation c1A
2v + c2Av + c3v = 0. These are all vectors in R3, so

we can multiply both sides by A2. Using A3v = 0, we see that Anv = 0 for all n ≥ 3
and therefore c3A

2v = 0. Since A2v 6= 0, c3 = 0.
So the linear relation must be c1A

2v + c2Av = 0. Multiplying both sides by A,
we see c2A

2v = 0. So c2 = 0. This means c1A
2v = 0 which implies c1 = 0 as well.

Any linear relation between these vectors is trivial, so they are 3 linearly independent
vectors in the 3-dimensional linear space R3 and they must form a basis of R3.

(b) Let B = (w1,w2,w3) where w1 = A2v, w2 = Av and w3 = v. We can �nd the
B-matrix for T column by column. The �rst, second and third columns of [T ]B are,
respectively, [Aw1]B, [Aw2]B and [Aw3]B. Aw1 = A3v = 0, Aw2 = A2v = w1 and
Aw3 = Av = w2. It follows that

[Aw1]B =

00
0

 , [Aw2]B =

10
0

 , [Aw3]B =

01
0

 ,

and so

[T ]B =

0 1 0
0 0 1
0 0 0

 .

Section 4.1

Problem 46. Let f ∈W . Then for some a, k ∈ R,

f = (a, a+k, a+2k, a+3k, . . .) = (a, a, a, a, . . .)+(0, k, 2k, 3k, . . .) = a(1, 1, 1, 1, . . .)+k(0, 1, 2, 3, . . .).

Thus W = Span(f1, f2) where f1 = (1, 1, 1, 1, . . .) ∈W and f2 = (0, 1, 2, 3, . . .) ∈W . Since
f1 6= 0W and f2 6= cf1 for any c ∈ R, f1, f2 are linearly independent and form a basis of W .
dim(W ) = 2.
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Problem 49. Consider the zero transformation that maps every vector in Rm to 0 ∈ Rn

is clearly a linear transformation. Consider linear transformations T1, T2 : Rm → Rn and
scalars c1, c2 ∈ R. For all x,y ∈ Rm and scalars a, b ∈ R,

(c1T1 + c2T2)(ax+ by) = c1T1(ax+ by) + c2T2(ax+ by)
= c1(aT1(x) + bT1(y)) + c2(aT2(x) + bT2(y)) since T1, T2 are linear
= a((c1T1 + c2T2)(x)) + b((c1T1 + c2T2)(y)) rearranging terms

We have show that c1T1 + c2T2 is also linear. L(Rm,Rn) ⊂ F (Rm,Rn) contains the zero
transformation and is closed under linear combinations, so it is a subspace of F (Rm,Rn).

Problem 54. Let V be a �nite-dimensional linear space and let dim(V ) = n. There are
at most n linearly independent vectors in V . Let W be any subspace of V . Since W ⊆ V ,
there exists an integer m, such that, m is the largest number of linearly independent vectors
in W . (Note that 0 ≤ m ≤ n.)

Let v1, . . . ,vm be a set of m linearly independent vectors inW . It is enough to show that
these vectors span W , then we have a �nite basis for W and dim(W ) = m ≤ n. Suppose
(for the sake of contradiction) that there exists x ∈ W such that x /∈ Span(v1, . . . ,vm).
By de�nition of span, x cannot be written as a linear combination of the independent
vectors v1, . . . ,vm. Therefore v1, . . . ,vm,x are linearly independent, but these are m + 1
independent vectors in W which contradicts the maximality of m. Therefore v1, . . . ,vm

must span W , and therefore form a basis of W . Then dim(W ) = m ≤ n.

Section 4.2

Problem 10. Let M,N ∈ R2×2 and a, b ∈ R.

T (aM + bN) = P (aM + bN)P−1 = aPMP−1 + bPNP−1 = aT (M) + bT (N)

Therefore T : R2×2 → R2×2 is a linear transformation.
Also M ∈ ker(T ) ⇐⇒ PMP−1 = 0 ⇐⇒ M = P−10P = 0. Since ker(T ) = {0} and

R2×2 is �nite-dimensional, Theorem 4.2.4(c) tells us that T is an isomorphism.

Problem 54. Consider f(t) = at2 + bt+ c ∈ P2. Then T (f) = 35
3 a+ 5

2b+ 5c.

f ∈ ker(T )⇐⇒ T (f) = 0⇐⇒ c = −7

3
a− 1

2
b⇐⇒ f(t) = a(t2 − 7

3
) + b(t− 1

2
)

Thus ker(T ) = Span(f1, f2) where f1(t) = t2 − 7
3 ∈ ker(T ) and f2 = t− 1

2 ∈ ker(T ). Since
f1, f2 are not scalar multiples of each other, they are linearly independent, they form a
basis of ker(T ) and nullity(T ) = 2.

Since dim(P2) = 3, the rank-nullity theorem implies rank(T ) = 1. We know im(T ) ⊆ R,
so im(T ) = R.

Problem 56. Consider f(t) = at2+bt+c ∈ P2. Then T (f) = 2at2+bt. Clearly the linearly
independent function t2 and t span im(T ), so they form a basis of im(T ) and rank(T ) = 2.
Also T (f) = 0⇐⇒ a = b = 0⇐⇒ T (f) = c. Then the constant function 1 forms a basis of
ker(T ) and nullity(T ) = 1.
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Problem 68. Consider M =

[
a b
c d

]
. Then T (M) =

[
3a −b

(5− k)c (1− k)d

]
. T (M) = 0 if

and only if a = b = 0 and (5 − k)c = 0 and (1 − k)d = 0. If k = 5, then c 6= 0 is possible
and ker(T ) 6= {0}. Similarly, if k = 1, then d 6= 0 is possible and ker(T ) 6= {0}. However,
if k 6= 1 and k 6= 5, T (M) = 0⇐⇒ a = b = c = d = 0⇐⇒M = 0 and ker(T ) = {0}.

Problem 76. From our study of invertible functions, we know that if T is an invertible
function from a set V to a setW , then its inverse T−1 : W → V is also an invertible function.
If T is an isomorphism (an invertible linear transformation) from a linear space V to a linear
space W , then we only need to prove T−1 : W → V is also a linear transformation.
Consider f, g ∈W and a, b ∈ R. Note that f = T (T−1(f)) and g = T (T−1(g)).

af + bg = aT (T−1(f)) + bT (T−1(g))
= T (aT−1(f) + bT−1(g)) since T is linear.

Then T−1(af + bg) = aT−1(f) + bT−1(g)

Problem 77. Let T : V → W and L : W → U be isomorphisms, or invertible linear
transformations.

Consider f, g ∈ V and a, b ∈ R.
L ◦ T (af + bg) = L(T (af + bg))

= L(aT (f) + bT (g)) since T is linear
= aL(T (f)) + bL(T (g)) since L is linear
= a(L ◦ T )(f) + b(L ◦ T )(g)

Thus, L ◦ T : V → U is linear.
To show L ◦ T is invertible as well, consider g ∈ U and the equation (L ◦ T )(f) = g.

L(T (f)) = g
⇐⇒ T (f) = L−1(g) since L is invertible
⇐⇒ f = T−1(L−1(g)) since T is invertible.

For every g ∈ U , the equation (L ◦ T )(f) = g has the unique solution f = (T−1 ◦ L−1)(g).
So the linear transformation L ◦ T is invertible, that is, L ◦ T is an isomorphism.


