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SECTION 3.3

Problem 62. Let dim(V) = m and let vi,...,vy, € V. C W form a basis of V. hese are
m linearly independent vectors in W. Theorem 3.3.4(a) implies dim(V') = m < dim(W).

Problem 63. Suppose V C W and dim(V) = dim(W) = m. Let vq,...,vj,, € V. C W
form a basis of V. Then they are linearly independent and V = Span(vy,...,vy,). Since
these are m linearly independent vectors in the m-dimensional space W, Theorem 3.3.4(c)
implies they also form a basis for W and W = Span(vy,...,v,,) = V.

Problem 66. Suppose for every x € R", there exist unique v € V and w € W such that
X=V+W.

Let xe VNW. Then x =x+0=0+x where v=x,w =0 or v=0,w = x. Uniqueness
implies x = 0 and V N'W = {0}.

Consider a basis vi,...,v, of V and a basis wy,...,w, of W.
Let x € R™. There exist v € V = Span(vy,...,v,) and w € W = Span(wy, ..., w,) such
that x = v +w € Span(vy,..., vy, Wi,...,Wy). So these p + ¢ vectors span R".

Let c1,...,¢p,d1,...,dq € R such that c;vi + ... +¢pvp +diwy + ... +dywy = 0. Note
that civi +... +¢vp € V and dywy + ... + dqwy, € W and since 0 = 0 + 0 is a unique

representation, civi+...+c¢pvp, = 0 and dywi+. . .+dyw, = 0. The basis vectors vi,...,v,
of V are linearly independent, so ¢; = ... = ¢, = 0. Similarly dy = ... =d,; = 0.
Therefore, we can see that the vectors vi,...,vp,, Wwi,..., w, must form a basis of R"” and

n = dim(R") = p+ ¢ = dim(V') + dim(W).

Suppose VNW = {0} and dim (V') + dim(W) = n.
Consider a basis vq,...,v, of V' and a basis wi,...,w, of W. Above we have proved
that VN W = {0}, vi,...,v, € V are linearly independent and wy,...,w, € W are
linearly independent implies all the vectors vq,...,v,, Wi,...,wy are linearly independent.
As dim(V') + dim (W) = n, these are n linearly independent vectors in R™ and they must
span R™.
So for every x € R", there exist c1,...,¢p,d1,...,dqy € Rsuchthat v=civi+...4¢c,vp, €V,
w=dwi+...+d;ws € Wand x =v +w.
Suppose there exist vi,ve € V and w1, wy € W such that x = vi + wi; = vo + wo. Then
vi—ve=wy—wi; € VNW. As VNW = {0}, vi = vo and w; = wy. Thus every x € R”
has a unique representation and V, W are complements in R".
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SECTION 3.4

Problem 54. Let vyq,...,v, and Z be bases of R™. Suppose ¢1[vi]z + ...+ ¢u[va]z = 0.
Due to linearity of coordinates [c1vy + ...+ epVplz = c1[vi]z + ... + en[vn]z = 0 = [0]7.
Since the coordinate transformation is invertible, ¢;vy + ...+ ¢pv, = 0. vq,...,Vv, are
linearly independent, therefore ¢; = ... = ¢, = 0. Thus the vectors [vi]z,...,[v,]7 are n
linearly independent vectors in R™ and they also form a basis of R™.

Problem 56. Let B = {vi,va} be the required basis of R? and consider the 2 x 2
3 g 3 2 nd
2 4] ~ 7|5 3] °
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Problem 58.

(a) Consider the linear relation ¢; A?v + coAv + c3v = 0. These are all vectors in R3, so
we can multiply both sides by A?. Using A%v = 0, we see that A"v = 0 for all n > 3
and therefore c3A%v = 0. Since A%v # 0, c3 = 0.

So the linear relation must be c;A%v + caAv = 0. Multiplying both sides by A,
we see cpA?v = 0. So ¢p = 0. This means ¢;A?>v = 0 which implies ¢; = 0 as well.
Any linear relation between these vectors is trivial, so they are 3 linearly independent
vectors in the 3-dimensional linear space R? and they must form a basis of R3.

(b) Let B = (w1, w2, w3) where w; = A%v, wy = Av and w3 = v. We can find the
B-matrix for T column by column. The first, second and third columns of [Tz are,
respectively, [Aw1]g, [Aws]s and [Aws|p. Aw; = A3v = 0, Awy = A%v = wy and
Awg = Av = wy. It follows that

matrix S = [vq vo]. For all x € R? x = S[x|s. Therefore

0 1 0
[Awi|g = |0]|, [Awsq|g= |0]|, [Aws]z= [1],
0 0 0
and so
010
Tlg=10 0 1
0 00

SECTION 4.1

Problem 46. Let f € W. Then for some a,k € R,

f = (a,a+k,a+2k,a+3k,...) = (a,a,a,a,...)+(0,k, 2k, 3k,...) =a(1,1,1,1,...)+k(0,1,2,3,...).

Thus W = Span( f1, f2) where f1 = (1,1,1,1,...) € W and fo = (0,1,2,3,...) € W. Since
f1 # 0w and fo # cfy for any ¢ € R, f1, fo are linearly independent and form a basis of W.
dim(W) = 2.
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Problem 49. Cousider the zero transformation that maps every vector in R™ to 0 € R"
is clearly a linear transformation. Consider linear transformations 77,75 : R™ — R"™ and
scalars c1,co € R. For all x,y € R™ and scalars a,b € R,

(11 + coTa)(ax + by) = ca1Ti(ax + by) + 2T (ax + by)
= c1(aTy(x) + bT1(y)) + ca(aTa(x) + 0T (y)) since Ty, Ty are linear
= a((aTy + c2T2)(x)) + b((e1Th + c212)(y)) rearranging terms

We have show that ¢171 + c2T% is also linear. L(R™,R") C F(R™,R™) contains the zero
transformation and is closed under linear combinations, so it is a subspace of F'(R™,R"™).

Problem 54. Let V be a finite-dimensional linear space and let dim(V') = n. There are
at most n linearly independent vectors in V. Let W be any subspace of V. Since W C V,
there exists an integer m, such that, m is the largest number of linearly independent vectors
in W. (Note that 0 <m < n.)

Let vq,..., vy, be aset of m linearly independent vectors in W. It is enough to show that
these vectors span W, then we have a finite basis for W and dim(W) = m < n. Suppose
(for the sake of contradiction) that there exists x € W such that x ¢ Span(vy,...,vy).
By definition of span, x cannot be written as a linear combination of the independent
vectors vi,...,Vy,. Therefore vy,...,v,,,Xx are linearly independent, but these are m + 1
independent vectors in W which contradicts the maximality of m. Therefore vi,..., vy,
must span W, and therefore form a basis of W. Then dim(W) =m <n.

SECTION 4.2
Problem 10. Let M, N € R>*? and a,b € R.
T(aM 4 bN) = P(aM + bN)P~t = aPMP~' + bPNP~! = aT(M) + bT(N)

Therefore T : R?*2 — R?*2 s a linear transformation.
Also M € ker(T) <= PMP~! =0 <= M = P~'0P = 0. Since ker(T) = {0} and
R2*? is finite-dimensional, Theorem 4.2.4(c) tells us that T is an isomorphism.

Problem 54. Consider f(t) = at> 4+ bt + ¢ € P5. Then T(f) = £a+ 5b + 5c.

F € ker(T) <= T(f) = 0 = ¢ = —ga— %IH:)f(t) :a(tQ—g)—i-b(t—%)
Thus ker(T) = Span(fi, f2) where fi(t) => — I € ker(T) and fo =t — 1 € ker(T). Since
f1, fo are not scalar multiples of each other, they are linearly independent, they form a
basis of ker(7") and nullity(7") = 2.
Since dim(P3) = 3, the rank-nullity theorem implies rank(7") = 1. We know im(7") C R,
so im(T) = R.

Problem 56. Consider f(t) = at?+bt+c € Py. Then T(f) = 2at?>+bt. Clearly the linearly
independent function ¢? and ¢ span im(7T'), so they form a basis of im(7) and rank(T) = 2.
Also T(f) =0 <= a=b=0 <= T(f) = c. Then the constant function 1 forms a basis of
ker(7T") and nullity(7") = 1.
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Problem 68. Consider M = [c d]' Then T(M) = G-ke (1—k)d| T(M) = 0if

and only if a =b =0 and (5 —k)c=0and (1 — k)d = 0. If k =5, then ¢ # 0 is possible
and ker(T') # {0}. Similarly, if £ = 1, then d # 0 is possible and ker(T") # {0}. However,
ifk#land k#5, T(M)=0<=a=b=c=d=0<= M =0 and ker(T) = {0}.

Problem 76. From our study of invertible functions, we know that if T is an invertible
function from a set V to a set W, then its inverse T~! : W — V is also an invertible function.
If T is an isomorphism (an invertible linear transformation) from a linear space V' to a linear
space W, then we only need to prove T-! : W — V is also a linear transformation.
Consider f,g € W and a,b € R. Note that f = T(T~(f)) and g = T(T"(g)).

af +bg aT(T7Y(f)) + bT(T~(9))
= T(aT7Y(f)+ T (g)) since T is linear.
Then T Y(af+bg) = aT 1(f)+bT(g)

Problem 77. Let T : V — W and L : W — U be isomorphisms, or invertible linear
transformations.
Consider f,g € V and a,b € R.
LoT(af +bg) = L(T(af +bg))
= L(aT(f)+bT(g)) since T is linear
= aL(T(f))+bL(T(g)) since L is linear
= a(LoT)(f)+b(LoT)(g)
Thus, LoT : V — U is linear.
To show L o T is invertible as well, consider g € U and the equation (Lo T)(f) = g.

L(T(f) = g
= T(f) = L (9 since L is invertible
= f = T YL Xyg)) since T is invertible.

For every g € U, the equation (L o T)(f) = ¢ has the unique solution f = (T~! o L=1)(g).
So the linear transformation L o T is invertible, that is, L o T is an isomorphism.



