MATH 217: LINEAR ALGEBRA SPRING 2104 WRITTEN HOMEWORK #8

Due Friday, June 6 at the beginning of class

Write clear and neat solutions to Problems 1 and 2 below and the following 6 problems from the textbook.

Problem 1: Let V and W be linear spaces and let $T:V\to W$ be an isomorphism. Prove that $f_1,\ldots,f_m\in V$ are linearly independent if and only if $T(f_1),\ldots,T(f_m)\in W$ are linearly independent.

Problem 2 : Let V be a linear space of dimension n, and let $T:V\to V$ be a linear transformation. Let \mathcal{B} be a basis for V, and assume $m\leq n$.

(a) Prove $\mathcal{F} = \{f_1, \dots, f_m\}$ is a basis for $\ker(T)$ if and only if $\{[f_1]_{\mathcal{B}}, \dots, [f_m]_{\mathcal{B}}\}$ is a basis for $\ker([T]_{\mathcal{B}})$. Here $[T]_{\mathcal{B}}$ is the \mathcal{B} -matrix for the transformation T, i.e., the $n \times n$ matrix such that

$$[Tf]_{\mathcal{B}} = [T]_{\mathcal{B}}[f]_{\mathcal{B}}, \quad \forall f \in V.$$

Conclude that $\operatorname{nullity}(T) = \operatorname{nullity}([T]_{\mathcal{B}}).$

(b) Prove $\mathcal{F} = \{f_1, \dots, f_m\}$ is a basis for $\operatorname{im}(T)$ if and only if $\{[f_1]_{\mathcal{B}}, \dots, [f_m]_{\mathcal{B}}\}$ is a basis for $\operatorname{im}([T]_{\mathcal{B}})$. Show that $\operatorname{rank}(T) = \operatorname{rank}([T]_{\mathcal{B}})$.

Hint: Consider the coordinate transformation $L_{\mathcal{B}}$ and use Problem 1.

Section 4.3: Problems 59, 69 (Hint for 59: Think Calculus)

Section 5.1: Problems 12, 22, 23, 25