MATH 217 SPRING 2014 WRITTEN HOMEWORK 8 SOLUTIONS

Problem 1. Let $T: V \to W$ be an invertible linear transformation. Suppose $f_1, \ldots, f_m \in V$ are linearly independent. Consider any linear relation

Only the trivial relation exists between f_1, \ldots, f_m , so $c_1 = \ldots = c_m = 0$. This implies $T(f_1), \ldots, T(f_m) \in W$ are linearly independent.

Note that $T^{-1}: W \to V$ is also an isomorphism and $T^{-1}(T(f)) = f$ for any $f \in V$. We can apply our result above to T^{-1} to prove the converse.

Problem 2. Let \mathcal{B} be a basis of an n-dimensional linear space V. The coordinate transformation $L_{\mathcal{B}}: V \to \mathbb{R}^n$ is an isomorphism. Using the result of Problem 1, we can see that $f_1, \ldots, f_m \in V$ are linearly independent if and only if $[f_1]_{\mathcal{B}}, \ldots, [f_m]_{\mathcal{B}} \in \mathbb{R}^n$ are linearly independent.

$$\begin{array}{rcl} f & = & c_1 f_1 + \ldots + c_m f_m \\ \iff & L_{\mathcal{B}}(f) & = & L_{\mathcal{B}}(c_1 f_1 + \ldots + c_m f_m) \\ \iff & [f]_{\mathcal{B}} & = & c_1 [f_1]_{\mathcal{B}} + \ldots + c_m [f_m]_{\mathcal{B}} \quad \text{since } L_{\mathcal{B}} \text{ is linear.} \end{array}$$

Therefore $f \in \text{Span}(f_1, \ldots, f_m)$ if and only if $[f]_{\mathcal{B}} \in \text{Span}([f_1]_{\mathcal{B}}, \ldots, [f_m]_{\mathcal{B}})$.

(a) Now what remains to be shown is that $\ker(T) = \operatorname{Span}(f_1, \dots, f_m)$ if and only $\ker([T]_{\mathcal{B}}) = \operatorname{Span}([f_1]_{\mathcal{B}}, \dots, [f_m]_{\mathcal{B}})$ or simply, $f \in \ker(T)$ if and only if $[f]_{\mathcal{B}} \in \ker([T]_{\mathcal{B}})$.

$$f \in \ker(T)$$

$$\iff T(f) = 0_V$$

$$\iff [T(f)]_{\mathcal{B}} = \mathbf{0} \qquad \text{since } L_{\mathcal{B}} \text{ is an isomorphism}$$

$$\iff [T]_{\mathcal{B}}[f]_{\mathcal{B}} = \mathbf{0} \qquad \text{using the characterizing equation of the } \mathcal{B}\text{-matrix}$$

$$\iff [f]_{\mathcal{B}} \in \ker([T]_{\mathcal{B}})$$

1

(b) Similarly

$$g \in \operatorname{im}(T)$$
 $\iff T(f) = g$ for some $f \in V$
 $\iff [T(f)]_{\mathcal{B}} = [g]_{\mathcal{B}}$ since $L_{\mathcal{B}}$ is an isomorphism
 $\iff [T]_{\mathcal{B}}[f]_{\mathcal{B}} = [g]_{\mathcal{B}}$ using the characterizing equation of the \mathcal{B} -matrix
 $\iff [g]_{\mathcal{B}} \in \operatorname{im}([T]_{\mathcal{B}})$

SECTION 4.3

Problem 59. Define $T: P \to P$ such that $T(f(x)) = \int_0^x f(t) dt$. Since integration respects linearity, you can verify that for all $f, g \in P_2$ and $a, b \in \mathbb{R}$, T(af + bg) = aT(f) + bT(g) and T is linear. Note that the constant term in T(f) must equal 0. If $f \neq 0$, then $T(f) \neq 0$; in fact the degree of T(f) must be at least 1. For example, $1 \notin \text{im}(T)$. So $\text{ker}(T) = \{0\}$ but $\text{im}(T) \neq P$.

Problem 69. Let M such that $m_{ij} = f_j(a_i)$. Then $\mathbf{c} \in \ker(M)$ if and only if $M\mathbf{c} = \mathbf{0}$ if and only if for each i, $\sum_{j=1}^{n} m_{ij}c_j = 0$ that is $\sum_{j=1}^{n} c_j f_j(a_i) = 0$.

This implies the polynomial $f = \sum_{j=1}^{n} c_j f_j \in P_{n-1}$ has n distinct roots a_1, \ldots, a_n . This violates the Fundamental Theorem of Algebra, unless f = 0. As basis elements f_1, \ldots, f_n are linearly independent, $\sum_{j=1}^{n} c_j f_j = 0$ implies $c_1 = \ldots = c_n = 0$, that is, $\mathbf{c} = \mathbf{0}$. This shows $\ker(M) = \{\mathbf{0}\}$ and the $n \times n$ matrix M must be invertible.

SECTION 5.1

Problem 12.

$$\begin{aligned} \|\mathbf{v} + \mathbf{w}\|^2 &= (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) \\ &= \mathbf{v} \cdot \mathbf{v} + 2(\mathbf{v} \cdot \mathbf{w}) + \mathbf{w} \cdot \mathbf{w} \\ &\leq \|\mathbf{v}\|^2 + 2|\mathbf{v} \cdot \mathbf{w}| + \|\mathbf{w}\|^2 \\ &\leq \|\mathbf{v}\|^2 + 2\|\mathbf{v}\| \|\mathbf{w}\| + \|\mathbf{w}\|^2 & \text{using Cauchy-Schwarz inequality} \\ \|\mathbf{v} + \mathbf{w}\| &\leq \|\mathbf{v}\| + \|\mathbf{w}\| & \text{taking the positive square root on both sides} \end{aligned}$$

Problem 22. Suppose \mathbf{x} is orthogonal to each basis vector $\mathbf{v}_1, \dots, \mathbf{v}_m$ of V, that is, $\mathbf{x} \cdot \mathbf{v}_i = 0$ for each i. Let $\mathbf{v} \in V$. There exist scalars c_1, \dots, c_m such that $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m$. Then $\mathbf{x} \cdot \mathbf{v} = \mathbf{x} \cdot (c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m) = c_1(\mathbf{x} \cdot \mathbf{v}_1) + \dots + c_m(\mathbf{x} \cdot \mathbf{v}_m) = 0$. \mathbf{x} is orthogonal to any $\mathbf{v} \in V$, and hence to the subspace V.

The converse is obviously true since $\mathbf{v}_1, \dots, \mathbf{v}_m \in V$.

Problem 23. Let $\mathbf{v} \in V$. By definition of V^{\perp} , $\mathbf{v} \cdot \mathbf{w} = 0$ for any $\mathbf{w} \in V^{\perp}$. Therefore $\mathbf{v} \in (V^{\perp})^{\perp}$ and $V \subseteq (V^{\perp})^{\perp}$, which implies $\dim(V) \leq \dim((V^{\perp})^{\perp})$.

Using Theorem 5.1.8(c) twice, $\dim(V) = n - \dim(V^{\perp}) = \dim((V^{\perp})^{\perp})$. As $V \subseteq (V^{\perp})^{\perp}$ and $\dim(V) = \dim((V^{\perp})^{\perp}) \le n$, we see that $V = (V^{\perp})^{\perp}$

Problem 25.

(a)
$$||k\mathbf{v}|| = \sqrt{(k\mathbf{v}) \cdot (k\mathbf{v})} = \sqrt{k^2(\mathbf{v} \cdot \mathbf{v})} = \sqrt{k^2}\sqrt{\mathbf{v} \cdot \mathbf{v}} = |k|||\mathbf{v}||.$$

(a)
$$\|k\mathbf{v}\| = \sqrt{(k\mathbf{v}) \cdot (k\mathbf{v})} = \sqrt{k^2(\mathbf{v} \cdot \mathbf{v})} = \sqrt{k^2}\sqrt{\mathbf{v} \cdot \mathbf{v}} = |k|\|\mathbf{v}\|.$$

(b) Since $\|\mathbf{v}\| \neq 0$, let $k = \frac{1}{\|\mathbf{v}\|}$ in part (a). Then $\|\mathbf{u}\| = \frac{1}{\|\mathbf{v}\|}\|\mathbf{v}\| = 1$.