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SOLUTIONS

Section 4.3

Problem 50. Let’s find [T ]B, the matrix for T in the basis B = (cos(t), sin(t)). We have

T (cos(t)) = (b− 1) cos(t)− a sin(t) , T (cos(t)) = a cos(t) + (b− 1) sin(t) ,

and so

[T (cos(t))]B =

[
b− 1
−a

]
[T (sin(t))]B =

[
a

b− 1

]
, [T ]B =

[
b− 1 a
−a b− 1

]
.

T is an isomorphism if and only if this matrix is invertible. The determinant of [T ]B is
a2 + (b − 1)2, which is zero if and only if a = 0 and b = 1. Thus T is an isomorphism for
all values of a, b except a = 0, b = 1.

Problem 60.

(a) Notice that b1 = a1, and b2 = a1+a2 Thus [b1]U =

[
1
0

]
and [b2]U =

[
1
1

]
. The change

of basis matrix from B to U is therefore

SB→U =

[
1 1
0 1

]
.

(b) Since for any x ∈ V , [x]U = SB→U [x]B, we have S−1B→U [x]U = [x]B. Thus the change of
basis matrix from U to B is

SU→B = S−1B→U =

[
1 −1
0 1

]
.

(c) They are related by [
b1 b2

]
=
[
a1 a2

]
SB→U ,

which is equivalent to the equations b1 = a1, and b2 = a1 + a2.

Problem 64. Denote

m1 =

[
1 0
0 0

]
, m2 =

[
0 1
0 0

]
, m3 =

[
0 0
0 1

]
,

so that the basis U is U = (m1,m2,m3). Notice that

I2 = m1 +m3, Q = m1 + 2m2 + 3m3, Q2 =

[
1 8
0 9

]
= m1 + 8m2 + 9m3.
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(a) We have

T (m1) = I2 = m1 +m3, T (m2) = Q = m1 + 2m2 + 3m, T (m3) = m1 + 8m2 + 9m3.

The matrix for T in the basis U is thus

[T ]U =

 | | |
[Tm1]U [Tm2]U [Tm3]U
| | |

 =

1 1 1
0 2 8
1 3 9

 .

(b) Let m =

[
a b
0 c

]
be an arbitrary matrix in V . Then

Tm = aI2+bQ+cQ2 =

[
a+ b+ c 2b+ 8c

0 a+ 3b+ 9c

]
= a(m1+m3)+b(m1+2m2+3m3)+c(m1+8m2+9m3).

Since a, b, and c can be any real numbers, we see that im(T ) =span(m1+m3,m1+2m2+
3m3,m1+8m2+9m3). Notice that −3(m1+m3)+4(m1+2m2+3m3) = m1+8m2+9m3,
and so the elementm1+8m2+9m3 is a redundant one, and im(T ) =span(m1+m3,m1+
2m2 + 3m3). These two elements are linearly independent, as only one of them has a
m2 term, and thus form a basis for im(T ). Since dim(im(T )) = 2, we have rank(T ) = 2.

By the rank-nullity theorem, the dimension of the kernel of T is 1, so to find a basis
for the kernel it suffices to find a single nonzero element of the kernel. Using the relation
described above, −3(m1 +m3) + 4(m1 +2m2 +3m3)− (m1 +8m2 +9m3) = 0, we find

that
[
−3 4
0 −1

]
∈ ker(T ), and so

ker(T ) = span
([
−3 4
0 −1

])
.

Section 5.1

Problem 16. Let u4 =


x1
x2
x3
x4

. If u4 is orthogonal to u1, u2, and u3, then

x1
2

+
x2
2

+
x3
2

+
x4
2

= 0

x1
2

+
x2
2
− x3

2
− x4

2
= 0

x1
2
− x2

2
+

x3
2
− x4

2
= 0,

which is the linear system

Au4 = 0, A =

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2

 .
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Notice that the rows of A are the vectors u1,u2,u3, i.e.

A =

− u1 −
− u2 −
− u3 −

 .

Using Gauss–Jordan elimination we find

rref(A) =

1 0 0 −1
0 1 0 1
0 0 1 1

 ,

which implies

u4 =


t
−t
−t
t


where t is a free parameter. If u4 is to be a unit vector, we must have 4t2 = 1, which
implies t = ±1

2 . We therefore find there are two possibilities:

u4 =


1/2
−1/2
−1/2
1/2

 , or u4 =


−1/2
1/2
1/2
−1/2

 .

Problem 28. Since the vectors


1
1
1
1

 ,


1
1
−1
−1

 ,


1
−1
−1
1

 are already mutually orthogonal, we

can obtain an orthonormal basis for their span simply by dividing each of them by their

length. We thus obtain the orthonormal basis for the span of


1
1
1
1

 ,


1
1
−1
−1

, and


1
−1
−1
1

:

U = (u1,u2,u3), u1 =


1/2
1/2
1/2
1/2

 , u2 =


1/2
1/2
−1/2
−1/2

 , u3 =


1/2
−1/2
−1/2
1/2

 .

Call the span of these vectors V . The orthogonal projection of e1 onto V is

projV e1 = (e1 · u1)u1 + (e1 · u2)u2 + (e1 · u3)u3 =
1

2
(u1 + u2 + u3) =

1

4


3
1
−1
1

 .
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Section 5.2

Problem 34. To find the kernel of A =

[
1 1 1 1
1 2 3 4

]
, we first put it in rref: rref(A) =

[
1 0 −1 −2
0 1 2 3

]
. It follows that x =


x1
x2
x3
x4

 ∈ ker(A) if and only if x =


x3 + 2x4
−2x3 − 3x4

x3
x4

,
where x3 and x4 are free variables. Thus

ker(A) = span(v1,v2), v1 =


1
−2
1
0

 , v2 =


2
−3
0
1

 .

The vectors v1,v2 form a basis for ker(A). To find an orthonormal basis we use the Gram-
Schmidt process on these vectors, to obtain the vectors u1,u2, where

u1 =
1

||v1||
v1 , u2 =

1

||v⊥2 ||
v⊥2 , v⊥2 = v2 − (u1 · v2)u1 .

u1 is straightforward to compute: u1 =
1√
6


1
−2
1
0

. We can then compute v⊥2 :

v⊥2 =


2
−3
0
1

− 1√
6
(2 + 6 + 0 + 0)

1√
6


1
−2
1
0

 =
1

3


2
−1
−4
3

 .

Finally we have

u2 =
1

||v⊥2 ||
v⊥2 =

1√
30


2
−1
−4
3

 .

Thus the vectors

u1 =
1√
6


1
−2
1
0

 , u2 =
1√
30


2
−1
−4
3


form an orthonormal basis for ker(A).
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Problem 36. This is almost already the QR-factorization. The only problem is that one
of the diagonal elements in the upper-triangular factor is not positive. To change it to a
positive number, consider each column of the matrix M separately. We have

M =

 | | |
v1 v2 v3

| | |


where

v1 = 2


1/2
1/2
1/2
1/2

 , v2 = 3


1/2
1/2
1/2
1/2

− 4


1/2
−1/2
−1/2
1/2

 , v3 = 5


1/2
1/2
1/2
1/2

+ 6


1/2
−1/2
−1/2
1/2

+ 7


1/2
−1/2
1/2
−1/2

 .

Notice that v2 and v3 can be rewritten as

v2 = 3


1/2
1/2
1/2
1/2

+ 4


−1/2
1/2
1/2
−1/2

 , v3 = 5


1/2
1/2
1/2
1/2

− 6


−1/2
1/2
1/2
−1/2

+ 7


1/2
−1/2
1/2
−1/2

 ,

and so M can be factored as

M =


1/2 −1/2 1/2
1/2 1/2 −1/2
1/2 1/2 1/2
1/2 −1/2 −1/2


2 3 5
0 4 −6
0 0 7

 ,

which is the QR-factorization.

Section 5.3

Problem 34. The dot product of the first and third columns is c and the dot product of
the second and third columns is d, and so if the columns are to be orthonormal we must
have c = d = 0. Since the first and second columns must be orthonomal, we arrive at the
nonlinear equations

ab+ ef = 0, a2 + e2 = 1, b2 + f2 = 1.

We also know that the first and third rows must be orthonormal, which gives the equations

ae+ bf = 0, a2 + b2 = 1, e2 + f2 = 1.

In particular, combining the equations a2 + e2 = 1 and a2 + b2 = 1 gives b2 = f2, and
combining the equations b2 + f2 = 1 and a2 + b2 = 1 gives a2 = f2, thus e = ±b and
f = ±b. Since ab+ ef = 0, the only possibilities are e = b, f = −a, or e = −b, f = a. We
thus find that the matrix must be eithera b 0

0 0 1
b −a 0

 , a, b ∈ R,
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or  a b 0
0 0 1
−b a 0

 , a, b ∈ R.

In each case, either a or b may be zero, but not both.

Problem 50.
(a) Consider an n×n upper triangular matrix A, and let v1, v2, . . . ,vn denote its columns.

Since A is upper triangular, v1 = a11e1, where e1 is the first standard vector and
a11 > 0. Since A is orthogonal, ||v1|| = 1, which implies that a11 = 1, and so v1 = e1.
Now consider the second column, v2. Since A is upper triangular, v2 = a12e1 + a22e2,
where a12 ∈ R and a22 > 0. The condition v1 · v2 = 0 implies that a12 = 0, and the
condition ||v2|| = 1 implies a22 = 1, thus v2 = e2. Similarly, we find vk = ek for each
k = 1, 2, . . . , n, and so A must be the identity matrix, In.

(b) Let B be an invertible matrix of size n × n, and suppose we can factor B in the ways
B = Q1R1 and B = Q2R2, where Q1 and Q2 are orthogonal matrices, and R1 and
R2 are upper triangular with positive entries on the diagonal. In particular, all of the
matrices Q1, Q2, R1 and R2 are invertible, and we have the equation Q1R1 = Q2R2,
which implies Q−12 Q1 = R2R

−1
1 . Denote C = Q−12 Q1 = R2R

−1
1 . Since C is the product

of the orthogonal matrices, it is orthogonal. Since C is the product of upper triangular
matrices, it is orthogonal as well. According to part (a) then, we must have C = In.
Thus Q−12 Q1 = In and R2R

−1
1 = In, and so Q1 = Q2 and R1 = R2. Thus there is a

unique QR-factorization for B.

Problem 60. Denote

m1 =

[
1 0
0 0

]
, m2 =

[
0 0
0 1

]
, m3 =

[
0 1
1 0

]
, m4 =

[
0 1
−1 0

]
,

and denote the basis B = (m1,m2,m3,m4). We have L(m1) = m1, L(m2) = m2, L(m3) =
m3, and L(m4) = −m4. The matrix for the transformation L in the basis B is thus

[L]B =

 | | | |
[L(m1)]B [L(m2)]B [L(m3)]B [L(m4)]B
| | | |

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .


