
Uniqueness of Representation by Trigonometric Series 

J. MARSHALL ASH', DePaul University, Chicago, IL 60614 

J. MARSHALL ASH received his S.B., S.M., and Ph.D. degrees at the Univer- I "k 
sity of Chicago where he was a student of Antoni Zygmund. He was a Joseph 
Fels Ritt instructor at Columbia University from 1966 to 1969. Since then he 
has been on the DePaul University faculty, where he became a full professor 
in 1974 and chaired from 1985 to 1987. In 1977 he was visiting professor at 
Stanford University. His research interests have centered on multiple 
trigonometric series, singular integrals, and real analysis, with forays into 
functional and numerical analysis. 

Abstract. In 1870 Georg Cantor proved that a 2sr periodic complex valued function of a real variable 
coincides with the values of at most one trigonometric series. We present his proof and then survey some 
of the many one dimensional generalizations and extensions of Cantor's theorem. We also survey the 
situation in higher dimensions, where a great deal less is known. 

1. Cantor's uniqueness theorem. In 1870 Cantor proved 

THEOREM C (Cantor [5]). If, for every real number x 
N 

lim E ce inx = 0, 
N-?oo n=-N 

then all the complex numbers cn, n = 0, 1, - 1, 2, - 2,... are zero. 

This is called a uniqueness theorem because it has as an immediate corollary the 
fact that a 2iT periodic complex valued function of a real variable coincides with the 
values of at most one trigonometric series. (Proof: Suppose Yaneinx = Ybeeinx for 
all x. Form the difference series E(an - bn)einx and apply Cantor's theorem.) 

This theorem is remarkable on two counts. Cantor's formulation of the problem 
in such a clear, decisive manner was a major mathematical event, given the point of 
view prevailing among his contemporaries.2 Equally enjoyable to behold is the rapid 
resolution that we will now sketch. 

Cantor's theorem is relatively easy to prove, if, as Cantor did, you have studied 
Riemann's brilliant idea of associating to a general trigonometric series T := ECneinx, 
the formal second integral, namely, F(x) = En,O(cn/(in)2)einX + cO(x2/2). For 
some interesting remarks on the importance of this idea, see the very enjoyable 
survey article of Zygmund [27]. Define the second Schwarz derivative D of a 

'The research presented here was supported in part by a grant from the University Research Council 
of DePaul University. 

The author is grateful to one referee for proposing an expanded treatment of multiple trigonometric 
series and to the other referee for making careful corrections and adding some historical remarks. 

2In the eighteenth century, physicists just "did" Fourier series (often quite successfully) without 
worrying about convergence very much at all. When doubts about convergence began to arise in the 
nineteenth century, the first attempts at rigor were rather heavy handed. See Dauben [9, pp. 6-31] for an 
interesting aiscussion of the historical context. 
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function G(x) by 

DG(x) = rn G(x + h) - 2G(x) + G(x - h) 
h-0 h 

The steps of the proof are: 
1. Since T converges everywhere, it is immediate that for every value of x, 

cneifX ? c_nei-nx 0 as n -* oo. By the Cantor-Lebesgue theorem, ICnl + Ic_nl 
O as n -x oo. Appendix 1 gives Cantor's weak but easy version of this. (For a 
statement of the more powerful Cantor-Lebesgue theorem see the survey article by 
Roger Cooke [8]. The proof given there is much shorter than the one in Appendix 1, 
but requires some of the machinery of modem analysis.) 

2. By the Weierstrass M-test from 

| c__inx SUp(|C | + icnx) 
I_e + )2 nI 
(in 2 in)2 n2 

it follows that F(x) - co(x2/2) is a continuous function and that F is the uniform 
limit of its partial sums. (See Theorems 25.7 and 24.3 in [14] for the M-test.) 

3. An important result of Schwarz's states that if G is continuous and DG(x) = 0 
for all x, then G is a linear function. (See [5, pp. 82-83].) Before presenting a proof 
of this, Cantor remarks that Schwarz mailed this result to him from Zurich.) We 
give a proof in Appendix 2. 

4. Since 

ei(x+h) - 2eix + ei(x-h) sin - 

=-eix I h 2 h 
2 

(Check this.), we have 

nh 2 

F(x + h)-2F(x) + F(x - h) sinm 

h2 n c0 nh n*0 

2 
From a0 ? S2?=1an = 0 it follows that limk OaO + n=1an(sin nk/nk)2 = 0. See 
Appendix 3 for Riemann's summation by parts proof of this. 

Hence DF(x) = 0 so F(x) = ax + /3 for some a and /3. 
5. The right side of the equation 

co-2 + ax + n3 )2 

is bounded. (From 2. above it is continuous, hence bounded on [0, 2 ], and hence 
bounded everywhere by periodicity.) Letting x -x oo twice first shows co = 0 and 
then a = 0. 

6. From the observation made in step 2 above, we see that the sequence 

SN(X) :-A + E ei 
O< InI AN (in) 
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converges uniformly to 0. But for each n # 0, 

(in )2 2Nx)d 
Cn = -| SN ( X) e ixdx 

2sr 
for all N > n by the orthonormality of { einx/ xv }, so letting N - oo gives cn = 0 
for all n * 0. (The uniformity of convergence allows the interchange of limit and 
integral.) Q.E.D. 

Cantor's beautiful theorem suggests a variety of extensions and generalizations. 
The remaining four sections of this paper will consider some of these. 

2. Summability and uniqueness. Can we improve Theorem C by weakening the 
assumption of convergence to zero to an assumption of being merely summable to 
zero? As is often the case in mathematics, the starting point is a counterexample 
which destroys the "obvious extension." 

The trigonometric series Ec einx is said to be Abel summable to s if for each r, 
O < r < 1, f(x, r) 2= Ec einxrInI converges and if limr f-f(x, r)= s. Let z reix 
= r(cos x + i sin x). Differentiate the identity 

X0 00 X A 1 1-z 1-rcosx 

E=O 
(cos 

nx)r\= 
9te / , z ) S 1 -z 1 - z ) 1 -2rcos x + r 

with respect to x to obtain 

? (1-r2)r sin x 
E (n sin nx)r n 2_2 
n=1 (1-2rcosx+r 2)2 

If x * 0, as r -> 1-, the right side tends to 0; while if x = 0, every term of f (O, r) is 
0, so that f(O, r) = 0, whence limr - f (O, r) = 0. Thus E?2=In sin nx is everywhere 
Abel summable to 0. Although this example is unpleasant, it turns out to be just 
about the worst thing that can happen. 

THEOREM V (VERBLUNSKY [25, VOL. I, PP. 352, 383], [22], [23]). If cn/InI -> 0 as 
In I - oo and Ec einx is Abel summable to 0 at every x, then all c, are 0. 

3. Higher dimensions. When we move from one to several dimensions, the 
picture becomes much more cloudy. Here is the land of opportunity. Almost 
nothing is known; almost every question that the novice might ask turns out to be 
an open question. The first goal is to mimic Cantor's Theorem C. Even this 
apparently modest goal remains to a large extent unachieved. The hypothesis that 
EC einx converges to 0 has several different interpretations in higher dimensions. 
Most of these can be illustrated in two dimensions, so to ease notation I will restrict 
myself to that case. The basic object will be the double trigonometric series 
T(x, y) = E(m,n)EZxZcmnei(mx?nY) 

We define a rectangular partial sum of T to be 

Tmn(XI y) = E c,,ei(Pix+vY)I 
JL,tt <m, Ivl <n 

a diamond shaped partial sum to be 

Tn (XI y) := E cE,,^ei(x+y) 
I,ul + Ivl <n 
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and a circular partial sum to be 

T(X, Y) = E cU e(F+) 
L2 + v2 <r2 

We freeze x and y and make five different definitions of convergence. 
If Tr - s as r oo say T is circularly convergent to s. 
If Tn s as r xo say T is triangularly convergent to s. 
If Tn - s as r oo say T is square convergent to s. 
If Tm - s as min{ m, n } oo say T is unrestrictedly rectangularly convergent to s. 
If Tmn n s as min{ m, n} - oo in such a way that m/n and n/m stay less than e, 
and if this happens for each (arbitrarily large) e > 1, say T is restrictedly rectangu- 
larly convergent to s. 

To each of these five notions of convergence there corresponds a putative 
extension of Theorem C. The first of these to be proved was the following. 

THEOREM SC (V. Shapiro and R. Cooke [19], [7]). If T(x, y) is circularly 
convergent to 0 everywhere, then all cmn are 0. 

In 1957 Victor Shapiro proved a two-dimensional version of Theorem V which 
implied a weak version of Theorem SC that required the additional hypothesis that 

1 
r E IlcmnIl -I O as r x-o. (1) 

(r- 1)2< m2 +n2< r2 

That this hypothesis was not needed was a consequence of a generalization of the 
Cantor-Lebesgue theorem due to Roger Cooke in 1971. (See Theorem Al below. A 
survey of Cooke's theorem and extensions of it by Zygmund [26] and Connes [6] can 
be found in the MONTHLY article by Cooke [8].) 

The proof of Theorem SC is modeled after Verblunsky's Theorem V mentioned 
above. Both these theorems carry out the Riemann-Cantor program of integrating 
twice and then differentiating twice. To get at the ideas behind Theorem SC, assume 
that T is circularly convergent to zero everywhere. Write M = (m, n), X = (x, y), 
M- X = mx + ny, and add the assumption that co = 0. (This simplifies the 
notation, but not the proof.) 

Let 

F(X, t)cmei. lt 
MO IM1 

and let 
F( X) = lim F( X, t). 

Then formally 

F(X) = O I{2ei = S 

and formally F( X) is a second integral of T( X). 
From Cooke's two-dimensional Cantor-Lebesgue theorem it follows that equa- 

tion (1) holds. This guarantees the existence of F(X, t). That F(X) exists for all X 
follows from the convergence and consequent circular Abel summability of T [18, 
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pp. 67-68]. We have 

ICM12 0ICI? k 0 CI 

M#O MI IMI=1 k=2 (k - 1k-< MI <k 

Condition (1) implies ICMI = o(IMI) so applying first this and then (1) itself shows 
the curly bracketed sum to be o(k2). Hence the sum is finite, so that by the 
Riesz-Fischer Theorem [20, p. 248] S is the Fourier series of a square integrable 
function. A basic fact about circular Abel summability implies that the function in 
question must be F [20, Cor. 2.15, p. 256]. In short {CM/IMI21 are the Fourier 
coefficients of the square integrable function F(X). 

The first major obstacle is that in distinction to the one dimensional case, it is 
quite difficult to demonstrate the continuity of F. 

In fact if F is continuous on the closure of an open disc B, then F is actually 
harmonic on B. This depends on an argument very much like the one given in 
appendix 2. The substitute for the second Schwarz derivative D used there is the 
generalized Laplacian A defined by 

8 
AF(X) lim - { Fh (X) - F(X)} 

h-,o h2 

where 

Fh(X) = h2/IF(X+H)dH. g h I H 6h 
This agrees with the usual Laplacian (= d 2F/ax2 + d 2F/dy2) for C2 functions as 
can be seen by expanding F into its Taylor series. We also have the representation 

F(X, t) = +-f2[3? FU) dU [l8, p.56]. 
27r I2 [t2+ (X- U)2]/ 

Changing to polar coordinates and integrating by parts gives 

F ) 
3 

1otf + r3F(X) dr [18, pp. 66-67]. (2) F(X, t = 
it (t2 +r212d 

Now 

- [ F(x, t)] L - e>2cMe MIt 

is the circular Abel means of the original series, so that from the hypothesis (1) it is 
immediate that limt O(d2/dt2)[F(x, t)] = 0. Shapiro then adapts a clever one- 
dimensional lemma of Rajchman [25, vol 1, pp. 353-354] to conclude from this that 
AF(X) = 0 at each X. This implication depends heavily on equation (2) [18, pp. 
66-67]. 

By an argument like the one in appendix 2, zero generalized Laplacian forces 
harmonicity. (The analog of the subtracted linear function of appendix 2 is the 
Poisson integral of F.) See Rado for details [12, p. 14]. It follows that if F(X) can 
be shown continuous everywhere, it will be harmonic everywhere. The continuous 
function F will be necessaiily bounded on the compact set [0, 2s] x [0,g2 ] and 
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consequently by periodicity bounded on the entire plane. But bounded harmonic 
functions are constant. (Apply Liouville's Theorem to the bounded analytic function 
exp(F + iF), where F is a harmonic conjugate of F.) So there will be a constant d 
so that 

d+ M eiM-X = o 

for all X. By the uniqueness theorem for square integrable functions (an immediate 
consequence of Parseval's formula [25, vol. II, p. 301]) it will follow that all CM = 0. 

It remains only to establish the continuity of F. This is done by generalizing a 
Baire category argument employed by Verblunsky. 

Since T(x, t) the circular Abel mean of the original series is continuous on 
{(X, t): t > 0} and has finite limit (namely 0) at each point, by a basic theorem of 
Baire for each disc in T2 there is a subdisc and a constant K so that I T(X, t) I < K 
for every X of the subdisc and every positive t [25, Vol. I, p. 29 (12.3i)] and [18, pp. 
69-70]. Integration in the t variable then shows that in that subdisc F(X) is 
continuous, being the uniform limit of F(X, t). 

Let Z be the set where F is not continuous. Let Z be the closure of Z. Assume 
Z is non-empty. An inspired idea that appears already in the proof of Theorem V 
now produces the desired contradiction, as follows. Applying the same Baire 
category argument that showed F(X, t) well-behaved on an open dense set to the 
set Z produces a point X0 E Z with F(X, t) converging uniformly to F(X) with 
respect to Z throughout a neighborhood of X0. If X is any point very close to X0, 
let X1 be a point of Z closest to X, say IX1 - Xj = s. Assume X ? X1, X1 = X0. (If 
either equality holds, the argument is even easier.) Then (i) F(X) = Fs(X), 
(ii) Fs(X) is close to Fs(X1), (iii) Fs(Xl) is close to F(X1, s), (iv) F(X1, s) is close to 
F(X1), and (v) F(X1) is close to F(Xo); whence F is continuous at X0, contrary to 
the definition of Z. (Reasons: (i) Continuity forces harmonicity as mentioned above, 
and harmonicity is equivalent to the mean value property ([12], p. 7). (ii), (iii) These 
need technical lemmas whose proofs are straightforward provided one is aware of 
the delicate estimate 

fl eiXe dX i3/2 

for large t. This is equivalent to the fact that the Bessel function J1(s) = 0(s-1/2) as 
s -* + x0 [18, pp. 68-69] and [20, p. 199]. (iv) Uniformity of convergence gives this. 
(v) Uniform limits are continuous.) 

This completes our discussion of the proof of Theorem SC. 
The other major result in two dimensions is this. 

THEOREM AW (J. M. Ash and G. Welland) [1], [2]. If T(x, y) is unrestrictedly 
rectangularly convergent to 0 everywhere, then all c .. n are 0. 

From the hypothesis it is immediate that at each X the partial sums tend to 0 "in 
the northeast," i.e., that 

limrln m n } 00 Tmn ( X) = 0 

One-dimensional convergent sequences of numbers are necessarily bounded, but 
two dimensional ones need not be. Nevertheless it can be proved that at each X, 
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sUpm, I Tmn( X) I < 00. In fact this is the hardest part of the proof of Theorem AW. 
It requires a technique that first appeared in the unpublished thesis of P. J. Cohen 
[2, pp. 402, 404-407]. 

Write 

Cmn(X) = Cm,nei(mx+nY) + C ,nei(-mx+ny) 

+ Cm,-nei(mx ny) + C ei(-mx-ny). 

The "Mondrian" identity 

Cmn(X) = Tmn(X) - Tm-l,n(X) - Tm,n-l(X) + Tm-1,n-1(X) 

implies that at each X the Cmn(X) also tend to 0 in the northeast and are bound- 
ed [2, pp. 410-411]. A Cantor-Lebesgue theorem finally gets back to the coef- 
ficient themselves. The result is that { cmn } is a bounded sequence and 
lim min(I m, I~ n c- = 0 [2, p. 408 and p. 411]. These two facts allow one to 
readily deduce that hypothesis (1) holds [2, p. 423]. It is also true that a unrestrictly 
rectangularly convergent double sequence of numbers is circularly Abel summable 
to the same value, provided the partial sums are bounded [2, pp. 413-416]. In 
particular, since T(X) converges unrestrictly rectangularly to 0 everywhere, it is 
circularly Abel summable to 0 everywhere. A careful examination of the proof of 
Theorem SC shows that condition (1) together with everywhere circular Abel 
summability to 0 are sufficient hypotheses for the proof to work. 

Remarks. When Grant Welland and I discovered this proof, I felt that there was 
an element of good luck involved here. First, the rectangular convergence gave just 
enough control of the coefficient size to force condition (1) and condition (1) is, in a 
sense, sharp. (The series To(x, y) := E2n sin nx "almost" satisfies (1) and is circu- 
larly Abel summable to 0 everywhere. The computations are in section 2 above.) 
More impertantly, there are usually no nontrivial connections between various 
modes of convergence and in particular unrestricted rectangular convergence of a 
trigonometric series on a set does not force circular convergence of the series, even if 
one is willing to discard a subset of measure 0 [2, pp. 417-420]. Thus the above 
mentioned result connecting unrestricted rectangular convergence and circular Abel 
summability came as a happy surprise. 

The other side of the coin is that this proof of Theorem AW was "too lucky." 
Often rectangular results for two-dimensional series can be extended to higher 
dimensions without much additional effort. The unexpected dependence of Theo- 
rem AW on Theorem SC means that a good three-dimensional uniqueness theorem 
for unrestricted rectangular convergence awaits either a good three-dimensional 
spherical uniqueness theorem or a completely new method of proof. Shapiro has 
proved a three-dimensional spherical uniqueness theorem, but it needs the hypothe- 
sis 
S1S~~~~~ 

r a Icimni 0 as r -X 00 (Na) 
(r-1)2 < 12 + m2 + n2< r2 

with a = 1. But a three-dimensional Cantor-Lebesgue theorem can only be expected 
to produce condition (Na) with a = 2. (See [2, p. 425] for a relevant counterexam- 
ple.) Thus even if one assumes that T(x, y, z) is everywhere circularly convergent to 
0, it is not known whether all Clmn must then be 0. There is even greater ignorance 
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concerning uniqueness questions about the other 3 modes of convergence mentioned 
above. For example, here are 3 open questions in two dimensions. 

Question 1. If T(x, y) is everywhere restrictedly rectangularly convergent to 0, 
does this force all Cm,, to be 0? 

Question 2. If T(x, y) is everywhere square convergent to 0, does this force all 
Cmn to be 0? 

Question 3. If T(x, y) is everywhere triangularly convergent to 0, does this force 
all Cmn to be 0? 

Again, it must be emphasized that easy counterexamples show that not much 
help will be available from Cantor-Lebesgue type theorems for square, restricted 
rectangular, or triangular convergence [2, pp. 416-418]. 

4. Fourier series. Return to one dimension. A third type of extension of Cantor's 
Theorem C occurs when the limit of the trigonometric series S c= cneinx is a 
Lebesgue integrable function f. The question now is whether S is necessarily the 
Fourier series of f, i.e., whether for each integer n there must hold the relation 

2n - ()-inx dx. cn = j2TT f W 

A typical result in this direction is the following. 

THEOREM (de la Vallee-Poussin [25, Vol. I, pp. 326, 382], [21]). If S converges to f 
at each x, and if f is finite at each x and if fo` jf(x) I dx < oo, then S is the Fourier 
series of f. 

5. Sets of uniqueness. If we replace the hypothesis Eccneinx = 0 everywhere by 
Ecneinx = 0 for x not in a "thin" subset E of [0, 2XT], we may still be able to 
conclude that all c,n = 0 if E is thin enough. Sufficiently thin sets E are called sets 
of uniqueness. A restatement of Theorem C is that the empty set is a set of 
uniqueness. It was already proved by W. H. Young [24] that every countable subset 
of [0, 2 T] is a set of uniqueness. (Cantor's earlier work showing that closed 
countable sets were sets of uniqueness led Cantor to the creation of set theory!) 
However, a set E of positive measure is too thick to be a set of uniqueness. (Proof 
from [25, Vol. I, p. 344]: Let E1 be a subset of E which is perfect and of positive 
measure, and let f(x) be the characteristic function of E1. The Fourier series of f 
converges to 0 outside E1, and so also outside E, but does not vanish identically 
since its constant term is I ElI /2q 7> 0.) One of the most interesting theorems in all 
analysis produces two classes of uncountable measure zero sets which are very much 
like each other metrically, although the first are sets of uniqueness and the second 
are not. 

Let 0 < t < 1/2. Dissect [0, 2T] into 2 closed "white" intervals, each of length 
27T~, [0, 27rf] and [27T(1 - t), 27T], and one open "black" interval (27Tt, 27r(1 - ())- 
Remove the black interval and repeat the process by dissecting each white interval 
into 2 closed white intervals of length 2 T42, and 1 centered open black interval of 
length 2 iTr - 2 - 27T 2. Iterating this process k times produces 2k closed white 
intervals, each of length 27Tk. (See FIGURE 1.) 

Now let k -- oo remembering to remove the black intervals at each stage. The 
resulting set E(() is said to be of Cantor type with constant ratio of dissection. 
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stage 1 

--------t e 

stage 2 

stage 3 

O "white" intervals for E(1/3) 

* "white" intervals for E(1/3) 

FIG. 1. 

Since 2k 2Xgk 0 as k oo, E(,) always has measure zero. In particular E(1/3) 
is the classical Cantor set. 

THEOREM SZ (R. Salem and A. Zygmund [16], [17], [25, Vol. II, p. 152], [15], [11]). 
If 1/t is an algebraic integer all of whose conjugates have modulus less than 1 (i.e., 
(1/)n + a1(1/)n-1 + - - - ?an = 0 for some integers a,, a2,..., a", n is minimal, 
and the other n - 1 roots of X + alXn-1 + **. +an = 0 have absolute value less 
than 1), then E(t) is a set of uniqueness. Otherwise E(t) is not a set of uniqueness. 

Now 1/3 = .33 ... > .3 = 3/10 so the process that forms E(1/3) leaves more 
material at each stage than does the process that forms E(3/10). Hence E(1/3) is 
intuitively thicker than E(3/10). Nevertheless 1/(1/3) satisfies x - 3 = 0 and 
hence is an algebraic integer without conjugates so that E(1/3) is a set of 
uniqueness; while 1/(3/10) is not an algebraic integer at all3 so that E(3/10) is not 
a set of uniqueness. Thus the "wrong" one of the pair E(1/3), E(3/10) is the set of 
uniqueness. 

Even more dramatically counterintuitive is the fact that the "very thick" set 
UE(t), where t varies over all reciprocals of algebraic integers with small conju- 
gates (t = 1/2 must be excluded), is also a set of uniqueness. This is true because 
N. Bary has proved that a countable union of closed sets of uniqueness is still a set 
of uniqueness. See ([25], Vol. I, p. 349) for this fact as well as further remarks on 
Theorem SZ. 

The other side of the coin from a set of uniqueness is a set of multiplicity. A set 
of multiplicity by definition is a subset of [0, 2Xw] which is not a set of uniqueness. 
More directly, E is a set of multiplicity if there is a trigonometric series which 
converges to 0 outside E but which does not vanish identically. Just as sets of 

3Assume 10/3 satisfies x" + *-. +an = 0 with all a, integer. Clearly n > 2, so (10`"1 + *-- 
+an_1311-1)10 + a,,3" = 0. Hence 3 divides lO"n- + 3(al + *-- +an13n-2), so 3 divides 10"-1, a 
contradiction. 
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uniqueness become more interesting as they get "thicker", so sets of multiplicity 
become more interesting as they get "thinner." As was shown above, every set of 
positive measure is a set of multiplicity. The first measure zero set of multiplicity 
was produced by Men'shov [10] and Theorem SZ above gives lots of examples. 

In a later review I will survey some of the extensive recent work that has been 
done on sets of uniqueness. At present this is the most active and exciting area of 
the four extensions I have discussed. The interested reader is encouraged to turn 
now to the books of Zygmund [25] or Bary [3] for much more comprehensive 
overviews of all the one-dimensional topics I have highlighted here. 

Note added in proof. A remarkable facet of Cantor's proof of Theorem C has 
been its uniqueness. The many difficulties encountered in attempts to generalize it 
suggest that a different proof of Theorem C could prove useful. Because of a recent 
development in real analysis I can now give such a proof. Suppose the series Ecnelnx 
converges to zero everywhere. Form the first integral c0x + 2(cn/in)einx. Although 
this L2 function is not easily seen to be continuous (The examples Xsin n0/ln n = 0 
but - Ecos nO/n ln n divergent give the flavor of the difficulty in working with a 
first integral.), it does follow directly from a theorem of Rajchman and Zygmund 
[25, Vol. 1, p. 324] that it has symmetric approximate derivative 0 at every point. By 
the aforementioned recent results {"A symmetric density property; monotonicity 
and the approximate symmetric derivative," Proc. Amer. Math. Soc., 104 (1988) 
1078-1102, and "A symmetric density property for measurable sets," Real Analysis 
Exchange, 14 (1988-89) 203-209, both by C. Freiling and D. Rinne}, there is a 
constant c so that 

Cox + e inx -C = 0 
in 

almost everywhere. The conclusion of Theorem C now follows from periodicity and 
Plancherel's Theorem. I will publish the details of this proof in the Proc. Amer. 
Math. Soc. 

Appendix 1. THEOREM Al (Cantor [4]). If cneifx ? c__ne-i 0 as n -4 oo for 
every x, then IcCn + Ic - n 0. 

Proof. From the convergence to zero of cneinx + C-ne-inX follows the conver- 
gence to zero of its real and imaginary parts. One may easily find real numbers 
a, bn, a, b"t, so that 

cnei ? c__eine = (a cos nx + bn sin nx) + (a' cos nx + b,n sin nx)i 

and direct calculation shows 

a2 + bn2 + a72 + bn,2 = 2(I cn l12 +Ic-n 12). 

Hence it suffices to prove that an cos nx + bn sin nx -O 0 for every x implies 
an2 + b2 _0. Define Pn a= a2 + bn2 and find On so pn cos On = an pnsin69 = bn 
Then an cos nx + bn sin nx = pn cos(nx - Osn), pn cos(nx - On) 0 for every x, and 
we need only show that pn 0. 

If pn does not tend to 0, there is a subsequence { nk } and a number 8 so that for 
every positive integer k, pnk > 8 > 0. 
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By discarding as many terms as necessary from {nk} we may also assume 
(nk+l/nk) > 3 for all k. Then 

cos(nlx - 0n) > - for x E1= - +, 2 3j/f 3n 

Since 
2,r n 2 

I111= and -> 3, 
3n1 n, 

as x ranges over I1, (n2x - 0n2) ranges over n2Il - 01n2 and 
2 7T 

1n2I1 - 1n21 = n2111 = n2" > 2,g. 
3n, 

Thus there is a closed interval I2 c I1 with cos(n 2x - 02) > 1/2 for all x E I2 
and II21 = 27T/3n2. Proceeding inductively produces a point t E ln 1 Ik with 
cos(nk -n k) > 1/2 for every k. Thus pnk cos(nkt -Onk) > 3/2 for every k. This 
contradicts the convergence to zero of pn cos(nx - On) at x = {. 

Appendix 2. THEOREM A2 (Schwarz, Cantor [5], [9, p. 33]. A continuous function 
G with everywhere 0 Schwarz derivative is necessarily a linear function. 

Proof. First suppose that there is a continuous nonconvex function H(x) satisfy- 
ing DH(x) > 0. Then there are points a < b < d with H(b) > L(b), where L is 
the linear function whose graph passes through (a, H(a)) and (d, H(d)). Let 
H1(x):= H(x) - L(x). Then H1(a) = H1(d) = 0, H1(b) > 0, H1 is continuous 
and DH1(x) = DH(x) > 0 for all x. Let c be a point of [a, d] where H1 is 
maximum. Note c E (a, d). (See Figure 2.) Then for all h < min{c - a, 
d - c},(1/2)[H1(c + h) + H1(c - h)] - H1(c) < 0, contrary to DH1(c) > 0. 

a b c d 

FIG. 2. 

Now from D(x2) = 2 (an easy calculation) and DG = 0, for each ? > 0 we have 
D(G + ex2)(X) > 0 for all x, so G + EX2 is convex. Let ? -> 0 to see that G is 
convex. Symmetrically, G - Ex2 is concave and hence G is also. Since the graph of 

4Warning: Here we must think of [0, 2 7] as R/27rZ, i.e. as the circumference of the unit circle. All 
this really means is that the set 11 should be thought of as an interval of length 27r/3n,, even if tnllnl is 
less than 7r/3n, from 0 or 27r. 
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G lies both above and below the chord passing through any two of its points, it is a 
line. 

Appendix 3. THEOREM A3 (Riemann [13, ?8, Theorem 1]. Let 

Isin nk\ 2 
Snk :=I k n > O, SOk := 1 

and suppose EY Oan = 0. Let Gk = Y2flOafsfk. Then limk Gk = 0 

Proof For each fixed k # 0, the series defining Gk converges since an 0 and 
ISnkl < c/n 2. Summation by parts yields 

N N-1 

f ansnk = Sn(Snk - Sn+1k) + SNSNk' 
n=O n=O 

wheresn= a0+ an.Let N -oo toget 
00 

Gk = Snf(Snk - Sn +lk) 
n=O 

Now for each integer N > 1 and each k + 0, 

N-1 00 

IGkI < SUp ISnI NE (ISnk - 1I + 11 - Sn+lkl) + (sup snl) E ISnk Sn+lkl 
1=O n>N n=N 

A + B. 

Since ISnk - Sn+lkI = fJn(k+l)kf(x) dxl where f(x) {= [sin x/x]2}', the sum in B 
is bounded by J'O lf(x)I dx. This is a finite constant since 

f(x) = 2 ix 
x x~~~~~x 

xcosx - sinx x(1 - ) - (x - 5) 
near x = 0 so that f is bounded on (0,1], and lf(x)I < 2 1 _ (x . 1 + 1)/x3 < 
4/x2 for x > 1. It follows that B can be made small by choosing N large. Once N 
is fixed, A can be then made small by picking k I small. 
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