

Affine descents and the Steinberg torus

T. Kyle Petersen University of Michigan

(joint with Kevin Dilks and John Stembridge, arXiv:0709.4291)

Chicago, October 6, 2007

Affine descents and the Steinberg torus

Eulerian polynomials

Coxeter complexes

Affine Eulerian polynomials

The Steinberg torus

Eulerian polynomials

The Eulerian polynomials, $A_n(t) = \sum_{k=0}^n a_{n,k} t^k$:

$$A_1(t) = 1 + t$$

$$A_2(t) = 1 + 4t + t^2$$

$$A_3(t) = 1 + 11t + 11t^2 + t^3$$

$$A_4(t) = 1 + 26t + 66t^2 + 26t^3 + t^4$$

$$\vdots$$

Eulerian polynomials

The Eulerian polynomials, $A_n(t) = \sum_{k=0}^n a_{n,k} t^k$:

$$A_1(t) = 1 + t$$

$$A_2(t) = 1 + 4t + t^2$$

$$A_3(t) = 1 + 11t + 11t^2 + t^3$$

$$A_4(t) = 1 + 26t + 66t^2 + 26t^3 + t^4$$

$$\vdots$$

symmetric, unimodal coefficients

Eulerian polynomials

The Eulerian polynomials, $A_n(t) = \sum_{k=0}^n a_{n,k} t^k$:

$$A_1(t) = 1 + t$$

$$A_2(t) = 1 + 4t + t^2$$

$$A_3(t) = 1 + 11t + 11t^2 + t^3$$

$$A_4(t) = 1 + 26t + 66t^2 + 26t^3 + t^4$$

$$\vdots$$

- symmetric, unimodal coefficients
- real-rooted

Let
$$d(w) := \#\{i: w_i > w_{i+1}\}$$
. Then, $A_n(t) = \sum_{w \in S_{n+1}} t^{d(w)}$

Let
$$d(w) := \#\{i: w_i > w_{i+1}\}$$
. Then, $A_n(t) = \sum_{w \in S_{n+1}} t^{d(w)}$

W	d(w)	$t^{d(w)}$
123		
132		
213		
231		
312		
321		

Let
$$d(w):=\#\{i:w_i>w_{i+1}\}$$
. Then, $A_n(t)=\sum_{w\in S_{n+1}}t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132		
213		
231		
312		
321		

Let
$$d(w):=\#\{i:w_i>w_{i+1}\}$$
. Then, $A_n(t)=\sum_{w\in S_{n+1}}t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132	1	t
213		
231		
312		
321		

Let
$$d(w):=\#\{i:w_i>w_{i+1}\}$$
. Then, $A_n(t)=\sum_{w\in S_{n+1}}t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132	1	t
213	1	t
231		
312		
321		

Let
$$d(w) := \#\{i: w_i > w_{i+1}\}$$
. Then, $A_n(t) = \sum_{w \in S_{n+1}} t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132	1	t
213	1	t
231	1	t
312		
321		

Let
$$d(w) := \#\{i: w_i > w_{i+1}\}$$
. Then, $A_n(t) = \sum_{w \in S_{n+1}} t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132	1	t
213	1	t
231	1	t
312	1	t
321		

Let
$$d(w) := \#\{i: w_i > w_{i+1}\}$$
. Then, $A_n(t) = \sum_{w \in S_{n+1}} t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132	1	t
213	1	t
231	1	t
312	1	t
321	2	t^2

Let
$$d(w):=\#\{i:w_i>w_{i+1}\}$$
. Then, $A_n(t)=\sum_{w\in S_{n+1}}t^{d(w)}$

W	d(w)	$t^{d(w)}$
123	0	1
132	1	t
213	1	t
231	1	t
312	1	t
321	2	t^2

$$A_2(t) = 1 + 4t + t^2$$

A generalization

The notion of descent makes sense in any Coxeter system (W, S) (and simple roots Δ):

$$d(w) := \#\{s \in S : \ell(ws) < \ell(w)\}\$$

= $\#\{\alpha \in \Delta : w(\alpha) < 0\}$

Define the W-Eulerian polynomial:

$$W(t) := \sum_{w \in W} t^{d(w)}$$

A generalization

The notion of descent makes sense in any Coxeter system (W, S) (and simple roots Δ):

$$d(w) := \#\{s \in S : \ell(ws) < \ell(w)\}\$$

= $\#\{\alpha \in \Delta : w(\alpha) < 0\}$

Define the W-Eulerian polynomial:

$$W(t) := \sum_{w \in W} t^{d(w)}$$

▶ The W-Eulerian polynomials are symmetric, unimodal, $(\gamma$ -nonnegative)

A generalization

The notion of descent makes sense in any Coxeter system (W, S) (and simple roots Δ):

$$d(w) := \#\{s \in S : \ell(ws) < \ell(w)\}\$$

= $\#\{\alpha \in \Delta : w(\alpha) < 0\}$

Define the W-Eulerian polynomial:

$$W(t) := \sum_{w \in W} t^{d(w)}$$

- ▶ The W-Eulerian polynomials are symmetric, unimodal, $(\gamma$ -nonnegative)
- Brenti has conjectured real-rootedness as well (D_n remains unproved)

Affine descents and the Steinberg torus

Eulerian polynomials

Coxeter complexes

Affine Eulerian polynomials

The Steinberg torus

Let Σ be a finite set of simplices, $f_k(\Sigma) =$ number of faces of dimension k-1

$$f(\Sigma;t) := \sum_{k=0}^{n} f_k(\Sigma) t^k$$

 (f_0, f_1, \ldots, f_n) is the f-vector

$$h(\Sigma;t):=(1-t)^n f(\Sigma;t/(1-t))=\sum_{k=0}^n h_k(\Sigma)t^k$$

 (h_0, h_1, \ldots, h_n) is the *h-vector*

▶ $f_0 = 1$

- $f_0 = 1$ $f_1 = 6$

- $f_0 = 1$
- ▶ $f_1 = 6$
- ► $f_2 = 6$

- ▶ $f_0 = 1$
- ► $f_1 = 6$
- ► $f_2 = 6$

$$f(\Sigma;t)=1+6t+6t^2$$

- ▶ $f_0 = 1$
- ► $f_1 = 6$
- $f_2 = 6$

$$f(\Sigma; t) = 1 + 6t + 6t^2$$

 $h(\Sigma; t) = 1 + 4t + t^2$

- ▶ $f_0 = 1$
- ► $f_1 = 6$
- $f_2 = 6$

$$f(\Sigma; t) = 1 + 6t + 6t^2$$

 $h(\Sigma; t) = 1 + 4t + t^2 = A_2(t) \text{ (hmm. . .)}$

The Coxeter complex

For a Coxeter system (W, S), the reflecting hyperplanes partition the ambient vector space

The Coxeter complex

For a Coxeter system (W, S), the reflecting hyperplanes partition the ambient vector space

By intersecting the hyperplanes with the unit sphere we achieve a topological realization of the *Coxeter complex*, $\Sigma(W)$

The W-Eulerian polynomial

Theorem (Björner, Brenti)

For any finite Coxeter group W,

$$h(\Sigma(W);t) = \sum_{w \in W} t^{d(w)} = W(t)$$

Affine descents and the Steinberg torus

Eulerian polynomials

Coxeter complexes

Affine Eulerian polynomials

The Steinberg torus

If W is crystallographic, it has a unique lowest root $\alpha_0=-\widetilde{\alpha}$ Let s_0 be the corresponding reflection, $\Delta_0=\Delta\cup\{\alpha_0\}$, and

$$\widetilde{d}(w) := d(w) + \chi(\ell(ws_0) > \ell(w))$$
$$= \#\{\alpha \in \Delta_0 : w(\alpha) < 0\}$$

If W is crystallographic, it has a unique lowest root $\alpha_0=-\widetilde{\alpha}$ Let s_0 be the corresponding reflection, $\Delta_0=\Delta\cup\{\alpha_0\}$, and

$$\widetilde{d}(w) := d(w) + \chi(\ell(ws_0) > \ell(w))$$

= $\#\{\alpha \in \Delta_0 : w(\alpha) < 0\}$

Definition (Dilks-Petersen-Stembridge)

The affine W-Eulerian polynomial is

$$\widetilde{W}(t) := \sum_{w \in W} t^{\widetilde{d}(w)}$$

$$\widetilde{W}(t) := \sum_{w \in W} t^{\widetilde{d}(w)}$$

Results of D-P-S, $\widetilde{W}(t)$ is:

$$\widetilde{W}(t) := \sum_{w \in W} t^{\widetilde{d}(w)}$$

Results of D-P-S, $\widetilde{W}(t)$ is:

 $ightharpoonup \gamma$ -nonnegative (\Rightarrow symmetric, unimodal)

$$\widetilde{W}(t) := \sum_{w \in W} t^{\widetilde{d}(w)}$$

Results of D-P-S, $\widetilde{W}(t)$ is:

- $ightharpoonup \gamma$ -nonnegative (\Rightarrow symmetric, unimodal)
- ▶ conjecturally real-rooted $(\widetilde{A}_n, \widetilde{C}_n,$ exceptional groups are proved; \widetilde{B}_n and \widetilde{D}_n are verified for $n \leq 100$)

In type A, $\widetilde{d}(w)$ is the number of cyclic descents

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123		
132		
213		
231		
312		
321		

$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
1	t
	$\frac{\widetilde{d}(w)}{1}$

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123	1	t
132	2	t^2
213		
231		
312		
321		

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123	1	t
132	2	t^2
213	2	t^2
231		
312		
321		

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123	1	t
132	2	t^2
213	2	t^2
231	1	t
312		
321		

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123	1	t
132	2	t^2
213	2	t^2
231	1	t
312	1	t
321		

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123	1	t
132	2	t^2
213	2	t^2
231	1	t
312	1	t
321	2	t^2

W	$\widetilde{d}(w)$	$t^{\widetilde{d}(w)}$
123	1	t
132	2	t^2
213	2	t^2
231	1	t
312	1	t
321	2	t^2

$$\widetilde{A}_2(t) = 3t + 3t^2$$

Jeopardy!

The answer is ...

Jeopardy!

The answer is ...

It is the topological construction whose h-vector is encoded by the affine Eulerian polynomial.

Jeopardy!

The answer is . . .

It is the topological construction whose h-vector is encoded by the affine Eulerian polynomial.

What is the Steinberg torus? (Correct!)

Affine descents and the Steinberg torus

Eulerian polynomials

Coxeter complexes

Affine Eulerian polynomials

Affine Coxeter complexes

The affine Weyl group W is generated by S along with the reflection through $H_{\widetilde{\alpha},1}:=\{\lambda:\langle\widetilde{\alpha},\lambda\rangle=1\}$, drawing all hyperplanes gives $\Sigma(\widetilde{W})$ (...if W is irreducible...)

Standard fact: the coroot lattice is a translation subgroup;

$$\widetilde{W} \cong W \ltimes \mathbb{Z}\Phi^{\vee}$$

Thus \widetilde{W} -action on V restricts to a W-action on the torus $V/\mathbb{Z}\Phi^\vee$ (Steinberg - looking at Poincaré series of affine Weyl group)

Definition (D-P-S)

The **Steinberg torus** of \widetilde{W} is

$$\Sigma_{\mathcal{T}}(\widetilde{\mathcal{W}}) := \Sigma(\widetilde{\mathcal{W}})/\mathbb{Z}\Phi^{\vee}$$

Standard fact: the coroot lattice is a translation subgroup;

$$\widetilde{W} \cong W \ltimes \mathbb{Z}\Phi^{\vee}$$

Thus \widetilde{W} -action on V restricts to a W-action on the torus $V/\mathbb{Z}\Phi^\vee$ (Steinberg - looking at Poincaré series of affine Weyl group)

Definition (D-P-S)

The Steinberg torus of \widetilde{W} is

$$\Sigma_{\mathcal{T}}(\widetilde{\mathcal{W}}) := \Sigma(\widetilde{\mathcal{W}})/\mathbb{Z}\Phi^{\vee}$$

 $ightharpoonup \Sigma_T(\widetilde{W})$ is a finite complex (boolean complex, or simplicial poset)

Standard fact: the coroot lattice is a translation subgroup;

$$\widetilde{W} \cong W \ltimes \mathbb{Z}\Phi^{\vee}$$

Thus \widetilde{W} -action on V restricts to a W-action on the torus $V/\mathbb{Z}\Phi^\vee$ (Steinberg - looking at Poincaré series of affine Weyl group)

Definition (D-P-S)

The Steinberg torus of \widetilde{W} is

$$\Sigma_{\mathcal{T}}(\widetilde{\mathcal{W}}) := \Sigma(\widetilde{\mathcal{W}})/\mathbb{Z}\Phi^{\vee}$$

- $ightharpoonup \Sigma_T(\widetilde{W})$ is a finite complex (boolean complex, or simplicial poset)
- maximal cells of in bijection with elements of W

$$\Sigma_{\mathcal{T}}(\widetilde{A}_2) := \Sigma(\widetilde{A}_2)/\mathbb{Z}\{\alpha_1^{\vee}, \alpha_2^{\vee}\}$$

Equivalently, observe that exactly one vertex of every alcove is in $\mathbb{Z}\Phi^\vee$, so we translate can translate to the origin

The union of (closures of) the alcoves neighboring the origin is a convex, W-invariant simplicial polytope:

$$P_{\Phi} := \{ \lambda \in V : -1 \le \langle \lambda, \beta \rangle \le 1 \text{ for all } \beta \in \Phi \}$$

We obtain the Steinberg torus by identifying opposite faces of P_Φ

• $f_0 = 0$ (...if we ignore the empty face, things work out nicer...)

- $ightharpoonup f_0=0$ (...if we ignore the empty face, things work out nicer...)
- ▶ $f_1 = 3$

- $ightharpoonup f_0 = 0$ (...if we ignore the empty face, things work out nicer...)
- ▶ $f_1 = 3$
- $f_2 = 9$

- $ightharpoonup f_0 = 0$ (...if we ignore the empty face, things work out nicer...)
- ▶ $f_1 = 3$
- ► $f_2 = 9$
- $f_3 = 6$

$$f(\Sigma_T; t) = 3t + 9t^2 + 6t^3$$

$$f(\Sigma_T; t) = 3t + 9t^2 + 6t^3$$
 $h(\Sigma_T; t) = 3t + 3t^2$

$$f(\Sigma_T; t) = 3t + 9t^2 + 6t^3$$
 $h(\Sigma_T; t) = 3t + 3t^2 = \widetilde{A}_2(t)$

Theorem (D-P-S)

For any irreducible affine Weyl group $\widetilde{W} = W \ltimes \mathbb{Z}\Phi^{\vee}$,

$$h(\Sigma_T(\widetilde{W});t) = \sum_{w \in W} t^{\widetilde{d}(w)} = \widetilde{W}(t)$$

► General topological reasons to expect $h_i \ge 0$ here? (symmetry? unimodality? γ -nonnegativity?)

- ▶ General topological reasons to expect $h_i \ge 0$ here? (symmetry? unimodality? γ -nonnegativity?)
- ▶ Real-rootedness: The remaining cases, D_n , \widetilde{B}_n , \widetilde{D}_n are γ -nonnegative (a necessary condition for real roots in this situation)

- ▶ General topological reasons to expect $h_i \ge 0$ here? (symmetry? unimodality? γ -nonnegativity?)
- ▶ Real-rootedness: The remaining cases, D_n , \widetilde{B}_n , \widetilde{D}_n are γ -nonnegative (a necessary condition for real roots in this situation)

 Each case boils down to peak combinatorics

- ▶ General topological reasons to expect $h_i \ge 0$ here? (symmetry? unimodality? γ -nonnegativity?)
- Real-rootedness: The remaining cases, D_n , \widetilde{B}_n , \widetilde{D}_n are γ -nonnegative (a necessary condition for real roots in this situation)
 - Each case boils down to peak combinatorics
- $ightharpoonup \Sigma_T(\widetilde{C}_2)$ is barycentric subdivision of cube with opposite faces identified, has nonnegative cd-index: Is there a more general result?

- ▶ General topological reasons to expect $h_i \ge 0$ here? (symmetry? unimodality? γ -nonnegativity?)
- ▶ Real-rootedness: The remaining cases, D_n , \widetilde{B}_n , \widetilde{D}_n are γ -nonnegative (a necessary condition for real roots in this situation)

 Each case boils down to peak combinatorics
- $\Sigma_T(\widetilde{C}_2)$ is barycentric subdivision of cube with opposite faces identified has poppositive ed index. Is there a more general
 - identified, has nonnegative cd-index: Is there a more general result?
- ▶ Reducible \widetilde{W} ?

- ▶ General topological reasons to expect $h_i \ge 0$ here? (symmetry? unimodality? γ -nonnegativity?)
- Real-rootedness: The remaining cases, D_n , \widetilde{B}_n , \widetilde{D}_n are γ -nonnegative (a necessary condition for real roots in this situation)
 - Each case boils down to peak combinatorics
- $ightharpoonup \Sigma_T(\widetilde{C}_2)$ is barycentric subdivision of cube with opposite faces identified, has nonnegative cd-index: Is there a more general result?
- ▶ Reducible W?
- "Fake" affine Eulerian polynomials

$$H_3^{fa}(t) = 26t + 68t^2 + 26t^3$$

$$H_4^{fa}(t) = 960t + 6240t^2 + 6240t^3 + 960t^4$$

Questions?

Art gallery:

http://www.math.lsa.umich.edu/~tkpeters/steinberg