I. VERY GENERALIZED RIEMANN DERIVATIVES

0. Generalized Riemann derivatives.

Let \(f \) be a real valued function of a real variable. The \(n \)th Riemann derivative of \(f \) is

\[
R_n f(x) := \lim_{h \to 0} \frac{\sum_{i=0}^{n} (-1)^{n-i} f(x + (-\frac{n}{2} + i)h)}{h^n}
\]

The first two special cases

\[
R_1 f(x) = \lim_{h \to 0} \frac{-f(x - \frac{h}{2}) + f(x + \frac{h}{2})}{h}
\]

and

\[
R_2 f(x) = \lim_{h \to 0} \frac{f(x-h) - 2f(x) + f(x + h)}{h^2}
\]

are the well known symmetric and Schwarz derivatives.

The generalized Riemann derivative which was the subject of my 1966 thesis[1] is

\[
D_n(b,a) f(x) := \lim_{h \to 0} \frac{A_n(h;b,a) f(x)}{h^n}
\]

where

\[
A_n(h;b,a) f(x) := \sum_{i=0}^{n+e} a_i f(x + b_i h)
\]

[1] The research presented here was supported in part by a grant from the Faculty Research and Development Fund of the College of Liberal Arts and Sciences, DePaul University
where e is a non-negative integer which I will call the excess and the \(a_i \)'s and \(b_i \)'s are real numbers. Here we insist upon the \(n+1 \) consistency conditions

\[
I a_i b^j = \begin{cases} 0 & j = 0, 1, \ldots, n-1 \\ n! & j = n \end{cases}.
\]

For notational convenience I will always assume \(b_0 < b_1 < \ldots < b_{n+e} \).

1. **Relations between different generalized derivatives.**

To see why these conditions are imposed let \(f^{(n)}(x_o) \) exist so that

\[
f(x_o + k) = \sum_{j=0}^{n} \frac{f^{(j)}(x_o)}{j!} k^j + o(k^{n+1}).
\]

(Here and throughout \(g(h) = o(h^\alpha) \) means \(\frac{g(h)}{h^\alpha} \to 0 \) as \(h \to 0 \).) This expansion is a slightly souped up version of Taylor's theorem which is due to de la Vallee-Poussin. Professor A. Zygmund showed it to me. Substitute this into (1) with \(k \) equal successively \(b_0 h, b_1 h, \ldots, b_{n+e} h \) to get

\[
\sum a_i f(x_o + b_i h) = \sum a_i \left[\sum \frac{f^{(j)}(x_o)(b_i h)^j}{j!} \right] + o(h^n)
\]

\[
= \sum \frac{f^{(j)}(x_o)}{j!} h^j \left[\sum a_i b_i^j \right] + o(h^n)
\]

\[
= \frac{f^{(n)}(x_o)}{n!} [n!] h^n + o(h^n).
\]

Divide by \(h^n \) and let \(h \to 0 \). We get \(D_n f(x_o) \) so that our derivatives are extensions of the usual ones. Very simple examples show these extensions to be strict. For example, \(a(x) = |x| \) has \(R_1 a(0) = 0 \) while \(a'(0) \) does not exist, and \(s(x) = \text{signum}(x) \) has \(R_2 s(O) = 0 \) while \(s'(0) \) and \(s''(0) \) do not exist.
The reason for calling e the excess is that if $e=0$ then the b_i's determine the a_i's via condition (2). Explicitly,

\[a_i = \frac{n!}{\prod_{j \neq i} (b_i - b_j)} \frac{\prod_{j \neq i} (x - b_j)}{\prod_{j \neq i} (b_i - b_j)} \]

To see this, let $L_i(x) := \frac{\prod_{j \neq i} (x - b_j)}{\prod_{j \neq i} (b_i - b_j)}$ be the Lagrange interpolating polynomial so that $L_i(b_i) = 1$ and $L_i(b_j) = 0$ when $j \neq i$. Then from (2) it is immediate that $A_n(1;b,a)L_i(0) = a_i$. On the other hand, $L_i(x) = [\prod(b_i - b_j)]^{-1}x^n + \text{lower powers of } x$, whence the nth ordinary derivative of L_i is the constant $n!/[\prod(b_i - b_j)]^{-1}$.

The Taylor expansion out to h^n is exact, i.e., without higher order terms, for polynomials of degree n, so that equations (4) show that

\[A_n(h;b,a)L_i(x) \]

is equal to this constant. Setting $x = 0$ and $h = 1$ proves (5). In particular, you can't make a first derivative without at least 2 terms, nor a second without at least 3, nor an n-th without at least $n+1$ points.

On the other hand even if all b_i's are fixed, if $e > 0$ you can choose e of the a_i's freely; then conditions (2) determine the rest.

Denjoy looked at the case of excess $= 0$.[11] I seem to have been the first to look at $e > 0$ systematically although particular cases have shown up in numerical analysis before.

The n-th Peano derivative f_n is a generalization of the ordinary derivative lying midway between the ordinary n-th
derivative and \(D_n f(x) \). By definition \(f_n(x) \) exists if \(n \) other numbers \(f_0(x), f_1(x), \ldots, f_{n-1}(x) \) also exist so that
\[
f(x_c + h) = f_0(x) + f_1(x)h + \ldots + f_{n-1}(x) \frac{h^n}{n!} + o(h^n).
\]
Note that \(f \) is continuous at \(x \) if \(f_0(x) = f(x) \) and \(f \) is differentiable at \(x \) if and only if \(f_1(x) \) exists. Then \(f'(x) = f_1(x) \).

The classic example showing \(f_2 \) to be a strict extension of \(f'' \) is \(x^3 \sin \frac{1}{x} \) at the point \(x=0 \). Note that what we proved above shows each \(D_n \) to be an extension of \(f_n \). Also note that the examples \(a(x) \) and \(s(x) \) show \(R_1 \) a strict extension of \(f_1(=f') \) and \(R_2 \) a strict extension of \(f_2 \). Again every \(D_n \) (except \(D_1 \) with \(a_0=0, a_1=1 \)) is a strict extension of the corresponding \(f_n \).

However the implication \(\exists f_n \rightarrow \exists D_n \) is reversible provided we are willing to throw away a set of Lebesgue measure 0. This was the main result of my 1966 PhD thesis.\([1]\)

If \(n \geq 2 \), one cannot return from \(f_n \) to \(f^{(n)} \) even on an almost everywhere basis. This question was discussed by Oliver in 1953. \([15]\) He does prove that \(\exists f_n \rightarrow \exists f^{(n)} \) provided \(f_n(x) \) is a bounded function on an interval as well as several other interesting results.

There is also a derivative, designated \(d_2 \) in \([2]\), which lies between \(f_2 \) and every \(D_2 \) in an almost everywhere sense.

Most of these notions and results go through in an \(L^P \) metric sense.\([1],[2]\)
Another way to return from D_n to f_n does work at a single point. This time assume that f is measurable and that every $D_n f(x_0)$ exists. Then it does follow that $f_n(x_0)$ exists. To improve on this result one should cut down on the number of Riemann derivatives assumed existent at x_0. Coupling the results of a 1969 paper — A Characterization of the Peano derivative — and a 1974 paper with Erdos and Rubel we have the following result. [2],[5]

Let $d_1(h) := f(x+h)-f(x)$,

$$d_2(a_1,h) := d_1(a_1h) - a_1d_1(h) = f(x+a_1h) - a_1f(x+h) + (a_1-1)f(x), \ldots$$

$$d_n(a_1,\ldots,a_{n-1};h) := d_{n-1}(a_1,\ldots,a_{n-2};a_{n-1}h) - a_{n-1}d_{n-1}(a_1,\ldots,a_{n-2};h)$$

and let $D_n(a)(x) := \lim_{h \to 0} \frac{d_n(a;h)}{h^n}$ (The a_i's are not 0, 1 or -1.) If f is measurable, and if whenever $a \in M^{n-1}$, $D_n(a)$ exists at $x = x_0$, and if M is "thick" enough; then $f_n(x_0)$ exists. The thickness of the set M determines how good this theorem is. Easy examples show that it is not enough for M to be countably infinite, nor for M to consist solely of positive numbers. If M has positive measure and contains a negative number then M is thick enough.

At $x=0$ the second derivative R_2 differentiates $s(x)$ but not $a(x)$, while the second derivative

$$P_2f(x) := \lim_{h \to 0} \frac{f(x) - 2f(x+h) + f(x+2h)}{h^2}$$

does not differentiate $s(x)$, but does differentiate $a(x)$ since looking only forward $a(x)$ is a straight line and looking only backwards $a(x)$ is also a straight line. However Patrick J. O'Connor, in an unpublished 1969 PhD
thesis at Connecticut Wesleyan shows that whenever two generalized Riemann n-th derivatives both exist at a point, they must agree.[14]

The idea of his proof is quite nice. If \(D_n = \lim_{h \to 0} \sum_{i,j} a_i f(x+b_i h) \)
and \(D'_n = \lim_{h \to 0} \sum_{i,j} a'_i f(x+b'_i h) \), form \(D_n \odot D'_n := \lim_{h \to 0} \sum_{i,j} a_i a'_j f(x+b_i b'_j h) \).
It is then easy to prove that \(D_n \odot D'_n \) is also a generalized Riemann derivative and that it agrees with both \(D_n \) and \(D'_n \).

2. **Numerical Analysis.**

Generalized Riemann derivatives have had application in numerical analysis. The symmetric derivative \(R_1 \) is "better" for approximation purposes than the ordinary derivative in the sense that for fixed \(h \) and very smooth \(f \),
\[
\frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2} f''(t) h \quad \text{while} \quad \frac{f(x+\frac{h}{2}) - f(x-\frac{h}{2})}{h} = f'(x) + \frac{1}{48} f^{(3)}(t) h^2
\]
and the error term \(\frac{1}{48} f^{(3)}(t) h^2 \) is "sort of smaller" than \(\frac{1}{2} f''(t) h \). Notice that to make the comparison fair I normalize and keep \(b_2 - b_1 = 1 \) in both cases. So to compare approximations to the first derivative based on 2+e function evaluations I fix \(h \) and look at differences
\[
\sum_{i=0}^{e+1} a_i f(x+b_i h) = A(b,a) f(x) \quad \text{subject to this normalization}
\]
\(b_{i+1} - b_i \geq 1 \) for all \(i \geq 0 \). If 2 such differences give for good \(f \)
\[
A(b,a) f(x) = f'(x) + c_r f^{(r)}(x) h^{r-1} + o(h^r)
\]
and
\[
A(b',a') f(x) = f'(x) + c_s f^{(s)}(x) h^{s-1} + o(h^s)
\]
define \(A(b,a) \) to be better than \(A(b',a') \) if either \(r > s \), or \(r=s \) and \(c_r < c_s \).
Then indeed \(b = (-\frac{1}{2}, \frac{1}{2}) \) gives the best 2 point difference. Again the best 4 point difference has \(b = (-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}) \) which is still no surprise. Again the answer you would guess for 6, 8, or any even number of points is correct. However, for 3 points the best \(b \) is
\[
b = \left(\frac{1}{\sqrt{3}}, -1, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, +1 \right) \approx (-.423, .577, 1.577),
\]
\[
= (a_3-1, a_3, a_3+1),
\]
for 5 points
\[
b = (a_5-2, a_5-1, a_5, a_5+1, a_5+2)
\]
where \(a_5 = \sqrt{15 - \sqrt{145}}/10 \approx .544 \), and for \(2k+1 \) points
\[
b = (a_{2k+1} - k, \ldots, a_{2k+1}, \ldots, a_{2k+1} + k) \]
where the \(a_n \) satisfy \(\frac{1}{2} < a_n < \frac{1}{2} + \frac{1}{4n}, n=3,5,\ldots \) and \(a_n \) is determined as the smallest positive zero of \(\frac{d}{dx} \left(\pi (x-1) \right) = 0 \). The choice of \(b \) and the approximating conditions
\[
\sum a_i = 0 \\
\sum a_i b_i = 1 \\
\sum a_i b_i^j = 0 \quad j = 2,3,\ldots,n-2
\]
determine \(a \) by linear algebra. This choice is unique up to the trivial inversion \((b,a) \rightarrow (-b,-a) \).

A similar situation occurs for the second derivative. Here the starting point is that \(R_2 \) gives the best 3 point difference. The results are similar to those above. Now the best 3,5,7,\ldots point
differences are based on the obvious symmetric choices of \(b \) while the even \(b \)'s are more interesting with the best 4 point \(b \) being

\[
b = (\beta_4, \beta_4^{-1}, \beta_4, \beta_4^{-1}), \quad \beta_4 = (1 + \sqrt{5/3})/2 \approx 1.145 \text{ and so on.}
\]

In a 1981 Math. Comp. paper Roger Jones and I work out the 3 point first derivative case which remains optimal even when roundoff error is taken into account [7]. The general results I just mentioned are detailed in a 1984 paper in Estratto de Calcolo with Svante Janson and Roger Jones.[9]

Question 1. Extend these results to \(n > 2 \). (Even \(n=3 \) was too hard for us.)

3. **Classification Questions**

A very interesting example is provided by the first derivative

\[
0_1 f(x) := \lim_{h \to 0} \frac{7f(x+3h) - 13f(x+4h) + 6f(x+\frac{16}{3}h)}{h}
\]

and the function

\[
f(x) := \text{sgn}(x)|x|^{\log_{4/3}(7/6)} - x.
\]

This example is given by Patrick O'Connor in his thesis.[14] Since

\[
p := \log_{4/3}(7/6) = \frac{\ln(7/6)}{\ln(4/3)} \approx .54, \ \text{sgn}(x)|x|^p \text{ looks like } \text{sgn}(x)^{\frac{1}{|x|}}.
\]
and f looks about the same. But then $0_1 f(x) = f'(x)$ whenever $x \neq 0$ and direct calculation shows that $0_1 f(0) = -1$. This example has a lot of shock value for me. Here is the graph of 0_1.

We have a non-Darboux derivative. We also have an everywhere increasing, everywhere differentiable (with respect to 0_1) function whose derivative is negative at a point.

On the other hand consider the symmetric derivative R_1. This derivative's existence does force a function to be Darboux. If a strictly increasing function has an everywhere existing symmetric derivative, then that derivative is positive. These two properties also hold for f'. We thus have at least 2 classification problems.

Question 2. Which generalized Riemann derivatives are Darboux? That is, for which D_1 does the existence of $D_1 f(x) = f(x)$ at every point x force f to have the intermediate value property?

Question 3. For which D_1 does f increasing on $(a-\epsilon, a+\epsilon)$ and $D_1 f(a)$ existing force $D_1 f(a) > 0$?

Notice that for both questions 0_1 is in the bad class, while R_1 and $\frac{d}{dx}$ are both in the good class.

4. **Further generalization.**

Let us now justify the "very" in the title of the talk. By the very generalized Riemann derivative $D^+_n(b,a)$ I mean the same thing as before except that the limit is now one sided, so

$$D_n(b,a) f(x) = \lim_{b+0^+} \frac{D_n(h;b,a)f(x)}{h^n}.$$
There is no need for a D_n^- to be defined since for example one has
\[
\frac{\sum_i f(x + b_i h)}{h} = \lim_{h \to 0^-} \frac{\sum(-a_i)f(x + (-b_i)(-h))}{h} = \lim_{h \to 0^+} \frac{\sum(-a_i)f(x + (-b_i)h)}{h} = D_1^+(-b, -a).
\]

One could go on to define objects similar to Dini numbers such as
\[
\lim \sup_{h \to 0^+} \frac{A_n(h; b, a)f(x)}{h^n}
\]
but I have not done anything in this direction.

It is obvious that D_n^+ is an extension of D_n, i.e. that if $D_n(b, a)f(x_0)$ exists so does $D_n^+(b, a)f(x_0)$ and the two are then equal. The extension is usually proper. Note that $R_n^+ = R_n$ and more generally enough symmetry in a and b will make $D_n^+ = D_n$. Probably one could prove that $\{(b_i, a_i)\} = \{(-b_i, -a_i)\}$ for n odd and $\{(b_i, a_i)\} = \{(-b_i, a_i)\}$ for n even is a necessary and sufficient condition for the extension to be improper, i.e., for $D_n^+ = D_n$ to hold.

The function $a(x) = |x|$ has $\left(\frac{d}{dx}\right)^+ a(0) = 1$ although $\left(\frac{d}{dx}\right)^- a(0)$ doesn't exist. A more interesting example is the second derivative
\[
A_2^+(x) := \lim_{h \to 0^+} \frac{(2/3)f(x+2h) - f(x+h) + (1/3)f(x-h)}{h^2}. \text{ Note that } \frac{2}{3} - 1 + \frac{1}{3} = 0, \frac{2}{3}(-1) + \frac{1}{3}(-1) = 0 \text{ and } \frac{2}{3}(2)^2 - 1(1)^2 + \frac{1}{3}(-1)^2 = 2.
\]
Then consider the function $u(x) = \begin{cases} 0 & x < 0 \\ \log_2(3/2) & x \geq 0 \end{cases}$. For $h > 0$,
\[
\frac{(2/3)u(0+2h) - u(0+h) + (1/3)u(0-h)}{h^2} = \frac{\log_2(3/2)}{h^2} \cdot \left(1 - \frac{1}{h^{2-q}}\right) = 0,
\]
so that $A_2^+ u(0) = 0$.

19
Clearly for $x \neq 0$, $A_2^+ u(x) = u''(x) = \begin{cases} 0 & x < 0 \\ q(1-q)x^{q-2} & x > 0 \end{cases}$. A similar calculation for $h < 0$ shows that $A_2 u(0)$ does not exist.

Again $q := \log_2(\frac{3}{2}) = \frac{\ln(3/2)}{\ln 2} \approx .58$ so $\log_2(3/2)$ looks like \sqrt{x} for positive x. Here is u.

If one allows $h \to 0^-$ as well, then the situation of continuous non-convex f with $A_2 f \geq 0$ everywhere does not arise. One reason to study A_2^+ is the following. The 0 excess very generalized second Riemann derivatives may be classified as

- type I if $b_0 < b_1 = 0 < b_2$;
- type II if $b_0 < 0 < b_1 < b_2$ or if $b_0 < b_1 < 0 < b_2$; and
- type III if $b_0 < b_1 < b_2 < 0$ or if $0 \leq b_0 < b_1 < b_2$.

I think that all the questions I will raise in studying A_2^+ will have easy answers for type I and type III derivative and that A_2^+ will prove to be a prototype for all those of type II. We will see more of u and A_2^+ shortly.
II. GENERALIZED RIEMANN DERIVATIVES AND ASSOCIATED SUMMABILITY METHODS

5. Generalized differentiation and uniqueness for trigonometric series.

Let \(T = \sum c_n e^{inx} \) be a trigonometric series. Suppose that at every \(x \in [0, 2\pi) \), \(T(x) := \lim_{N \to \infty} \sum_{-N}^{N} c_n e^{inx} = 0 \). Then all \(c_n = 0 \). This is the fundamental theorem in the subject. It was announced by Riemann in 1854 and the last detail of his proof was supplied in a letter from H.A. Schwarz to Cantor who published it in 1870. [10],[16],[17]

Theorem R. If \(F \) is continuous and \(R_2 F = 0 \) everywhere, then \(F \) is a line.

This theorem is immediate from a lemma.

Lemma R. If \(F \) is continuous and \(R_2 F \geq 0 \) everywhere then \(F \) is convex.

Consider the following statement.

"Lemma" A. If \(F \) is continuous and \(A^+_2 F \geq 0 \) everywhere, then \(F \) is convex.

As the continuous non-convex \(u \) enjoys \(A^+_2 u \geq 0 \) for all \(x \), this statement is false.

However, we are left with the following open question.

"Theorem" A. If \(F \) is continuous and \(A^+_2 F = 0 \) everywhere, then \(F \) is linear.

Question 4. Is "Theorem" A true?
This question is very hard. Why does it matter? On the one hand, theorem R is the cornerstone of the entire theory of uniqueness. There are many open questions concerning multiple trigonometric series whose resolution would be easy if higher dimensional analogues of Theorem R were available. For example suppose \(T(x,y,z) \) converges unrestrictedly rectangularly to 0, that is, suppose

\[
\lim_{L,M,N \to \infty} \lim_{l=-L}^{L} \lim_{m=-M}^{M} \lim_{n=-N}^{N} c_{l,m,n} e^{i(lx + my + nz)} = 0, \text{ at every } (x,y,z).
\]

No one knows if it then follows that all \(c_{l,m,n} \) are 0. On the other hand, Theorem R has only one known proof, namely via Lemma R. To extend Theorem R to higher dimensional settings it could be useful to have another proof. A proof of "Theorem" A couldn't use the false "Lemma" A and so would probably also yield a genuinely new proof of Theorem R.

Another question related to uniqueness is

Question 5. Let \(F(x,y) \) be continuous and suppose

\[
0 = \lim_{h,k \to 0} \left\{ \frac{F(x-h,y+k) - 2F(x,y+k) + F(x+h,y+k)}{h^2} \right\} \cdot \frac{1}{h^2}
\]

at each \((x,y)\). Is \(F \) then necessarily of the form \(F(x,y) = (ax + b) + (cy + d) \) where \(a \) and \(b \) are functions of only \(y \), and \(c \) and \(d \) are functions of only \(x \)? See my paper with Welland or my survey article in my book for some details and partial results about this.\[3],[6\]

A related question is

Question 6. It follows easily from Theorem R that if

\[
\frac{1}{h} \int_{0}^{h} |f(x+t) - f(x-t)| \, dt = o(h) \quad \text{at all points } x, \text{ then } f \text{ is constant.}
\]

Prove this without invoking Lemma R.
This would follow if a function with everywhere 0 symmetric approximate derivative could be shown to be constant. A positive resolution of question 6 will necessarily also provide a new proof of Riemann's uniqueness theorem.[4]

6. **Generalized Differentiation and Summability.**

In an attempt to prove "Theorem" A I was led to a related summability result. Let \(F(x) = \sum c_n e^{inx} \) be a continuous function. Form the distributional second derivatives \(F'' := \sum (in)^2 c_n e^{inx} \). An elementary computation shows

\[
\frac{F(x+h) - 2F(x) + F(x-h)}{h^2} = \sum (in)^2 c_n e^{inx} \left(\frac{\sin nh}{nh} \right)^2.
\]

By definition \(R_2 F(x) := \lim_{h \to 0} \) (L.H.S.) and by definition the series \(F'' \)

is summable \((R, 2)\) to \(s \) if \(s = \lim_{h \to 0} \) (R.H.S.). Thus theorem \(R \) can be restated by saying that a continuous function whose distributional second derivative is summable \((R, 2)\) everywhere to 0 is linear.

Similarly the derivative \(A_2^+ \) corresponds to a method of summability, call it summability \(A_2^+ \). There is a theorem of Kuttner [13] that summability \((R, 2)\) implies Abel summability and a theorem of Verblunsky [17] stating that if \(\sum c_n e^{inx} \) is Abel summable to 0 everywhere and \(c_n = o(n) \) then all \(c_n = 0 \). I hoped to show "Theorem" A by first showing summability \(A_2^+ \) implies Abel summability, then controlling the coefficients, and finally applying Verblunsky's theorem.
So define a series \(\sum a_n \) to be summable \(A^+_2 \) to \(s \) if
\[
\lim_{n \to \infty} \sum_{n=1}^{\infty} a_n F(\text{inh}) = s \quad \text{where}
\]
\[
F(t) = \frac{(2/3)e^{2t} - e^t + (1/3)e^{-t}}{t^2}.
\]
As with the Riemann situation we have \(A^+_2 F(x) \) exists if and only if the twice formally differentiated Fourier series of \(F \) is summable \(A^+_2 \). The function \(u(x) \) above, restricted to \([\pi, \pi]\) and then extended periodically, thus has \(u'' \), its distributional second derivative, summable \(A^+_2 \) to 0 at 0. However \(u'' \) is not Abel summable at 0 as a direct calculation shows so summability \(A^+_2 \) does not imply Abel summability.

7. **Mean Value Theorems for Generalized Riemann Derivatives.**

The prettiest type of mean value theorem would say something like this. Let \(I = [x+b, x+b+e] \) where \(x \) and \(b \) are fixed. If \(\Delta_n f(t) \) exists for every \(t \in I \), then there is a \(\xi \) interior to \(I \) with
\[
\frac{\Delta_n(h; b, a)f(x)}{h^n} = \Delta_n f(\xi).
\]

But this is not even true for \(R_1 \) as the choices \(x = -1 \), \(h = 3 \) and \(f(t) = |t| \) show.
I would suspect that the only generalized Riemann derivative for which this mean value theorem holds is \(\frac{d}{dx} \) itself.

Question 7. Classify the \(D_n \) for which the mean value theorem in the above form is true.

A more fruitful set of mean value theorems are those of following type.

Statement M(\(b, a \)). Fix \(x \) and \(h \) and set \(I = [x + b_0 h, x + b_{n+1} h] \). If \(f^{(n-1)}(t) \) is continuous on \(I \) and differentiable for all \(t \) interior to \(I \), then there is a \(t \) interior to \(I \) with \(\frac{\Delta_n(h; b, a)f(x)}{h^n} = f^{(n)}(t) \).

A classification of the set of \((b, a) \) for which this statement is true is the goal of my present research with Roger Jones who is also at DePaul.[8]

We have a sufficient condition which is totally operational and which we can show to be necessary for all first and second generalized Riemann derivatives.

Let \(p_0, \ldots, p_e \) be real numbers with \(\sum p_i = 1 \). Let \(b_0 < b_1 < \ldots < b_{n+1} \) be \(n+1+e \) real numbers. Let \(D_0 \) be the unique generalized \(n \)-th derivative based on \(\{b_0, \ldots, b_n\} \), \(D_1 \) the unique one based on \(\{b_1, \ldots, b_{n+1}\}, \ldots, D_e \) the unique one based on \(\{b_e, \ldots, b_{n+e}\} \), and set \(D = \sum_{i=0}^{e} p_i D_i \). Then a quick check of the consistency condition shows that \(D \) is also an \(n \)-th derivative. Conversely, given any \(n \)-th generalized Riemann derivative \(D \) based on \(\{b_0, \ldots, b_{n+e}\} \) we can write \(D \) as \(\sum p_i D_i \) where the \(p_i \) are uniquely determined by \(b \) and \(a \). The \(p_i \) are very easily found and satisfy \(\sum p_i = 1 \).
For example, O'Connor's derivative is associated to

\[
\frac{7f(x+3h)-13f(x+4h)+6f(x+(16/3)h)}{h} = \\
7 \left[\frac{f(x+3h)-f(x+4h)}{h} \right] - 6 \left[\frac{f(x+4h)-f(x+(16/3)h)}{h} \right] = \\
-7 \left[\frac{-f(x+3h)+f(x+4h)}{h} \right] + 8 \left[\frac{-f(x+4h)+f(x+(16/3)h)}{(4/3)h} \right].
\]

So letting \(D_0\) and \(D_1\) be the limits of the last 2 bracketed expressions, as \(h \to 0\) we have \(O_\omega = p_0D_0 + p_1D_1\),

where \(p_0 + p_1 = -7 + 8 = 1\).

Theorem. Let \(D_n(b,a)\) be an \(n\)-th generalized Riemann derivative.

i) If the \(p_i\) associated to \(D\) are all positive (so that \(D\) is a convex combination of \(n\)-th derivatives without excess), then Theorem \(M(b,a)\) holds.

ii) Conversely if \(n=1\) or \(n=2\) or \(e=1\), and if any \(p_i\) is negative; then Statement \(M(b,a)\) is false.

Question 8. What happens if \(n>3\), \(e>2\), and some \(p_i\) is negative?

In particular, what happens for the excess 2 third derivative

\[D := (5/8)D_0 - (1/4)D_1 + (5/8)D_2,\] where for \(i = 0, 1, 2,\)

\[D_i := -f(x+ih)+3f(x+[i+1]h)-3f(x+[i+2]h)+f(x+[i+3]h)?\]

The proof of i) is short and sweet. First if \(e=0\) then \(p_0=1\) and indeed Theorem \(M\) is a well established numerical analysis fact.[12]

If \(e>0\), using this fact \(e+1\) times we have numbers \(\xi_i\) so that

\[s = \frac{D_n(h; b, a)f(x)}{h^n} = \sum_{i=0}^{e} p_i f^{(m)}(\xi_i).\]
The right side is a convex combination of the numbers
\(f^{(n)}(x_0), \ldots, f^{(n)}(x_e) \) and hence \(s \) lies between the smallest and the largest. But \(f^{(n)} = (f^{(n-1)})' \) is an ordinary first derivative, hence is Darboux and therefore assumes the value \(s \).

The proof of ii) is longer so we will restrict ourselves to one simple case. Let \(b_0 < b_1 < b_2 \), let \(A_0 \) be the difference quotient associated to the unique first derivative based on \(\{b_0, b_1\} \), \(A_1 \) the one based on \(\{b_1, b_2\} \), and \(A = -7A_0 + 8A_1 \). Let \(f \) be this piecewise linear function.

Then \(A_1 = 1, A_0 = 0 \) so \(A = 8 \), but \(f' = 0 \) or \(1 \). Finally round the corner at \(b_1 \) very slightly. This will make \(\text{Range}(f') = [0, 1] \) but keep \(A \) close to 8 so that the mean values theorem fails for \(A \).

We do the second derivative case by piecing together quadratics and then rounding the corners. The example for the general \(n \), excess 2 derivative case uses an \(n \)th degree polynomial.
REFERENCES

